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Fluid-Filled Parallel-Channel Networks
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Abstract

A pressurized fluid-filled parallel-channel network embedded in an elastic beam, asymmetrically to the neutral plane,
will create a deformation field within the beam. Deformation due to embedded fluidic networks is currently studied
in the context of soft actuators and soft-robotic applications. Expanding on this concept, configurations can be
designed so that the pressure in the channel network is created directly from external forces acting on the beam, and
thus can be viewed as passive solid–fluid composite structures. We approximate the deformation of such structures
and relate the fluid pressure and geometry of the network to a continuous deformation-field function. This enables the
design of networks creating steady arbitrary deformation fields as well as to eliminate deformation created by external
time-varying forces, thus increasing the effective rigidity of the beam. In addition, by including the effects of the
deformation created by the channel network on the beam inertia, we can modify the response of the beam to external
time-varying forces. We present a scheme to design channel networks that create predefined oscillating deformation
patterns in response to external oscillating forces. The ability to include inertial effects is relevant to the design of
dynamic soft robots and soft actuators. Our results are illustrated and validated by numerical computations.

Introduction

Fluid enclosed within an elastic solid may apply pres-
sure and shear stress on the fluid–solid interface and

thus create a stress field and a deformation field within the
solid.1–4 The interaction between the pressure field of an
internal fluid-filled channel network and the deformation
field of the supporting elastic structure is currently researched
within the context of soft robotics and soft actuators.5–15 In
this work we expand on the concept of pressurized soft ac-
tuators and suggest utilizing pressurized parallel-channel
networks to significantly increase the effective rigidity of
elastic structures by canceling deformation fields created by
steady or time-varying external forces. The pressure within
the channel network can be applied directly by the external
forces (e.g., by a pin in contact with the fluid), and the
structure thus can be viewed as a passive solid–fluid com-
posite structure.

Currently, the majority of research on soft robots and soft
actuators, based on fluidic network, focuses on experimental
studies and quasi-static motions.5–15 The goal of this work is

to provide a scheme to analyze and design embedded fluidic
networks in order to create a predefined dynamic motion of a
soft actuator. We will obtain a relation between the geometry
of the channel network, the inertial effects, elastic stresses,
and the time-varying deformation of the actuator. Such a
relation will enable the design of rapidly moving soft ro-
bots and the inclusion of the effect of external loads on the
performance of a soft actuator. While many works in the
field use inhomogenous structures and large deformations,
for simplicity we will focus here on a homogenous Euler–
Bernoulli beam and assume small deformations as a model
for the elastic and inertial dynamics of a soft actuator. These
assumptions limit the validity of the model; however, for a
given configuration with known properties, the results pre-
sented in this work can be readily extended.

We study a rectangular beam with height h, width w, and
length l under the requirements h/w « 1 and w/l « 1 (see Fig.
1a). The Young’s modulus, density, Poisson’s ratio, and mass
per unit length of the beam are E, q, m, and ls, respectively.
An interconnected parallel-channel network is distributed
within the beam perpendicular to the x – z plane (see Fig. 1b).
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The fluid pressure is p and is assumed spatially uniform. The
difference between the length of a single channel and the
width of the beam w is required to be negligible compared
with it’s length l. The total length of channel segments con-
necting the parallel channels is required to be negligible
compared with the total length of channel network. In addi-
tion, we focus on channel networks with negligible effect on
the second moment of inertia and mass per unit length of the

beam. The deflection of the beam in the z direction is denoted
by d. We assume small deformations so that d = de + dn is a
sum of de, the deformation due to external forces, and dn, the
deformation due to the pressurized channel network.

Analysis

A single pressurized channel will create local stress and
strain fields that will decay far from the channel.16 A pres-
surized channel positioned asymmetrically with regard to the
midplane will create a change of the slope of the beam due to
asymmetric strain field (see Fig. 2a). For a sufficiently small
ratio h/w « 1, the problem is approximately two-dimensional,
and thus we can define the change in beam slope due to a
single channel as w:

qdn(xiþDx)

qx
� qdn(xi�Dx)

qx
¼w

p

E
, v,

zi

h
,

di

h

� �
, (1)

where xi is the location of the center of the channel and Dx is
sufficiently large so that the stress field vanishes. The value of
w, the change in beam slope due to a single channel, can be
obtained numerically or experimentally for a given material,
pressure, and channel configuration.

Throughout this work we present numerical computations
in order to validate our analysis. In all cases we simulate a
beam with h = 7$10 - 3 m, w = 5$10 - 2 m, l = 0.1 m, E = 8$106

Pa, q = 3500 kg/m3, and m = 0.4. The channel cross section is
square with width di /(h/2) = 4/7. The beam includes a 0.5 mm
area on all sides without a network, and the connecting
channels have identical properties to the parallel channels. A
spatially uniform pressure is applied at the solid–fluid inter-
face. Our computations utilize commercial code COMSOL�
multiphysics 4.3 with &105 grid elements to calculate the
solid deformation, using the Rayleigh damping algorithm

a

b

FIG. 1. A three-dimensional illustration (a) and a cross-
sectional illustration (b) of an elastic beam with an em-
bedded interconnected parallel-channel network.

FIG. 2. (a) The definition of w and the
geometric parameters of the channel; (b) w
vs. p/E for various values of zi/(h/2), where
di/(h/2) = 4/7; (c) vw/v( p/E) vs. zi/(h/2)for
various di/(h/2); and (d) vw/v( p/E) vs. (xi + 1–
xi)/di, the distance between centers of adja-
cent channels, for various p/E. In (b) and (c)
the channel cross section is a square with
width and height di.
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with mass damping coefficient a = 6.352$10 - 3 [1/s] and
material structural damping coefficient b = 1.136$10 - 3 [s].

In Figure 2 we present values of w obtained by numerical
computations for a channel with a square cross section.
Figure 2a illustrates the definition of w and the geometric
parameters of the channel, including zi, the distance of the
channel center from the midplane, and di, the width and
height of the square cross section. Figure 2b presents w versus
p/E for various values of zi/(h/2), where di/(h/2) = 4/7. Figure
2c presents vw/v( p/E) versus zi/(h/2) for various di/(h/2).
Figure 2b and c show that w increases monotonically with
zi/(h/2) and di/(h/2). Figure 2d presents vw/v( p/E) versus
(xi + 1 – xi)/di for various p/E, examining the effect of inter-
action between adjacent channels on vw/v( p/E). The influ-
ence of adjacent channels is shown to be small, even for
distances of (xi + 1 – xi)/dc&1.2. From Figure 2a–c, the value
of w is approximately linear with p/E, and thus

w � p

E

qw
q(p=E)

p

E
¼ 0, �,

zi

h
,

di

h

� �
: (2)

We define the channel density / of a parallel-channel
network (see Fig. 1) as the number of channels per unit
length. For characteristic length scale l much greater than the
characteristic distance between the channels (l » 1//), we can
approximate the change in slope to a continuous function:

q2dn

qx2
¼ 1

dx

qdn(xþ dx)

qx
� qdn(x)

qx

� �
¼ 1

dx
(kw), (3)

where k is the number of channels in the interval dx. Defining
the local density of the channels as / = k/dx and applying (2)
yields a relation between the parallel-channel configuration
and the deformation pattern created by the pressurized net-
work, denoted as dn:

q2dn
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From Eq. (4) we can obtain the required geometry of a
channel network to create a predetermined deformation field
dn. After calculating / from Eq. (4), the location of the center
of the channel xi is determined by

Z xi

0

j/jdx¼ i� 1

2
, (5)

where i is a natural number. Hereafter, in all cases, we solve
/ for zi/(h/2) = 4/7. For cases in which we obtain / < 0
(negative channel density), we replace zi/(h/2) = 4/7 with
zi/(h/2) = - 4/7 and thus change the sign of vw/v (p/E).

Results

Figure 3 illustrates the creation of an arbitrary steady de-
formation field of the beam by designing the channel network
according to Eq. (4). Figure 3a presents sine deformation field
dn/l = 0.02 sin (2px/l) and Figure 3b presents a circular de-
formation defined by (x/l)2 + (dn/l + 2)2 = 4. Good agreement
is observed between the model (red dashed lines) and nu-
merical computations (blue solid lines).

For slender linearly elastic beam, the deformation created
by steady external forces, denoted as de, is given by Euler–
Bernoulli beam theory as v2 de/vx2 = M/EI, where M is the
bending moment and I = h3 w/12 is the second moment of
inertia. Assuming small deformations, the total deflection of
the beam is d = dn + de. Thus, the deflection due to external
forces, de, can eliminated by requiring

q2dn

qx2
þ q2de

qx2
¼ 0/� p(t)

E
/(x)

qw(x)

q(p=E)
þ M

EI
¼ 0: (6)

FIG. 3. The deformation field created by a channel net-
work calculated by Eq. (4) for dn/l = 0.02 sin (2 px/l) (a) and

dn=l¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� (x=l)2

p
� 2 (b). Composite solid–fluid deflection

is marked by red dashed lines (analytic) and smooth blue
lines (numeric). For comparison, deformation field without
the network is marked by black dotted lines.

FIG. 4. The deformation field created by a channel net-
work calculated by Eq. (6) in order to cancel external uni-
uniform load. Two values of q/E = 2.5$10 - 5 (a) and
q/E = 5$10 - 5 (b) are examined. Composite solid–fluid de-
flection is marked by red dashed lines (analytic) and smooth
blue lines (numeric). For comparison, deformation field
without the network is marked by black dotted lines.
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Therefore, for any bending moment distribution that can be
presented as M = f1(t) f2(x), the deflection field can be elimi-
nated by requiring p(t) = f1(t) and /(x)vw(x)/v( p/E) = f2(x).
Since the total deformation d = de + dn is constant, no iner-
tial effects will be created due to the time-varying external
forces.

In Figure 4 we illustrate utilizing an internal fluidic network
to enhance the effective rigidity of an elastic beam. The re-
quired deformation field is marked by red dashed lines and the
deformation obtained by numerical computations is marked by
solid blue lines. For comparison, a solid beam without em-
bedded channel network is presented by dotted black lines. For
the case of uniform load q/E = 2.5$10- 5 (e.g., load acting on a
wing), the required network geometry was calculated ac-
cording to Eq. (6) for p/E = 3.16$10- 2. Since the deformation
is linear both with p/E and with q/E, an increase of the external
load to q/E = 5$10- 5 would be eliminated by a proportional
increase in the network pressure to p/E = 6.32$10- 2. Thus, the
cancellation of deformation by varying external load can be
eliminated by a single network configuration.

On the basis of the above, we suggest a fluid–solid com-
posite structure in which application of external force directly

creates pressure within an internal channel network. Such
structures will allow control of the dynamic response of
beams to external loads by the addition of the deformation
created by the pressurized network configuration to the de-
formation created by external forces. An illustration of such a
structure is presented in Figure 5a, where a force f may be
applied by a pin directly on the fluid, creating a fluid pressure
p = f/a, where a is the area of the pin. Figure 5 presents
the response of such a structure to steady external force
f = 3.15[N] (Fig. 5b) and to a sudden impulse f = d(t–ts)
1.26$10 - 2[N], where d is Dirac’s delta function (Fig. 5b).
Order of magnitude reduction in deformation is observed for
both the steady and time-varying external forces.

So far we focused on creating steady deformation fields. In
order to create a predefined time-varying deformation field,
the design of the internal channel network will need to in-
clude the effect of solid inertia. The deformation field created
by the channel network yields acceleration of the beam, and
thus the Euler–Bernoulli equation is

q2

qx2
EI

q2de

qx2

� �
¼ � ls

q2

qt2
(deþ dn)þ qw, (7)

where ls is beam mass per unit length. Substituting d = de + dn

and Eq. (4) yields equation of the total deflection including

FIG. 5. (a) A cross-sectional illustration of a solid–fluid
composite structure. (b) The deformation field created by
the external force f on the pin (where f = 3.15 [N] and
a = 6.23$10 - 6 [m2]). (c) Response to an impulse f = d(t - ts)
1.26$10 - 2 [N] where ts = 0.35 [s]. The channel network is
calculated by Eq. (4) in order to eliminate deformation.
Composite solid–fluid deflection is marked by red dashed
lines (analytic) and smooth blue lines (numeric). For com-
parison, deformation field without the network is marked by
black dotted lines.

FIG. 6. Deflection of a solid–fluid composite beam due to
external oscillating force acting at x/l = 0.5. The parallel-
channel network (illustrated in inserts) is designed by Eq.
(9) to create deflection (a) d/l = 0, (b) d/l = 0.01 sin (3px/l)
sin (xt) and (c) d/l = 0.03 sin (2px/l) sin (xt), where x = 62.8
[1/s]. Each time cycle is divided into four equal parts.
Composite solid–fluid deflection is marked by red dashed
lines (analytic) and smooth blue lines (numeric). For com-
parison, deformation field without the network is marked by
black dotted lines.
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the effects of the channel network geometry and time-varying
(spatially uniform) pressure as

q2

qx2
EI

q2d

qx2
þ/

p

E

qw
q(p=E)
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¼ � ls

q2d

qt2
þ qw: (8)

Solution of Eq. (8) can be obtained for an oscillating de-
formation of the form d/l = D (x) sin (xt + h) under similarly
oscillating external load q = Q (x) sin (xt + h), where D(x)
and Q(x) are known functions defining deformation and
external load, respectively, x is the angular frequency, and h
is the phase. For the case of a solid–fluid composite (see Fig.
5a), the internal pressure is proportional to the external force,
and thus p = P sin (xt), where P is a known constant. Sub-
stituting d/l, q, and p into Eq. (8) yields the required network
density:

/¼
Z x

0

Z g

0

(lsx
2
nlD(n)�wQ(n))dndg� l

q2D

qx2

� �

· P
qw

q(p=E)
EI

� �� 1

(9)

We illustrate use of Eq. (9) for the case presented in Figure 5a
with q/E = C1 d (x/l – 1/2) sin (xt)/w, and thus p/E = C1 sin (xt)
wl/a, where a = 2.207$10- 6 [m2] is the area of the pin and
C1 = 2[N]. The value of x is 62.8[1/s], where the natural angular
frequency of the beam is &88[1/s]. Figure 6a presents the ef-
fects of oscillating external force for / designed by Eq. (9). In
part (a) d/l = 0, in part (b) d/l = 0.01 sin (3 px/l) sin (xt), and in
part (c) d/l = 0.03 sin (2 px/l) sin (xt). The required deformation
field is marked by red dashed lines and the deformation obtained
by numerical computations is marked by solid blue lines. Good
agreement is observed between the theoretic predictions and the
numerical computations.

Concluding Remarks

In order to apply this work to specific experimental con-
figuration, the actuator geometry needs to be approximated
to an Euler–Bernoulli beam and the change of angle due to a
single channel as a function of pressure, w( p), needs to be
obtained from experimental or numerical data. For small
deformations, the required parameters are Young’s modulus
E second moment of inertia I, mass per unit length ls, and
the value of vw/vp at p = 0. While in this work, for sim-
plicity, we presented solutions for cases of homogenous
beams with a constant cross section, Eqs. (1–8) are also
valid for inhomogeneous beams with spatially varying vw/
vp (x), E(x), I(x), and ls(x). For configurations where the
approximation w(p)&pvw/vp is incorrect, Eq. (8) still de-
scribes the dynamics of the beam, as long as the Euler–
Bernoulli approximation is valid. However, the term pvw/vp
should be replaced with w( p) and the effect of the pressure
on the moment of inertia I( p) and mass per unit length ls( p)
should be included. For such cases the governing equation is
expected to be nonlinear and would thus require a specific
mathematical treatment based on the type of nonlinearity.

In conclusion, embedded fluidic networks can be used to
create complex time-varying deformation patterns in elas-
tic beams. We presented a scheme to control such time-

varying and periodic deformation fields of soft actuators via
the geometry of the embedded fluidic network. The ability
to design time-varying deformation field may be used as the
basis for the design of running, jumping, or any maneu-
vering soft robots with nonnegligible inertial effects. We
also present a scheme to utilize external forces acting on the
actuator to directly pressurize the channel network (as
presented in Fig. 5a). Such configurations allow for passive
control of the response of the beam to external loads, and
can be viewed as composite solid–fluid structures. Future
research may include the effects of fluid viscosity and a
nonuniform pressure distribution on the transient response
of such structures to external forces, as well as modeling
the complete dynamics of a maneuvering robot actuated
by a combination of elastic beams with fluidic embedded
channel networks.
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