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Abstract

We use magnetohydrodynamic levitation as a means to create a soft elastomeric solenoid-
driven pump. We present a theoretical framework and fabrication of a pump designed to address the
unique challenges of soft robotics, maintaining pumping performance under deformation. Using a
permanent magnet as a piston, and ferrofluid as a liquid seal, we model and construct a deformable
displacement pump. The magnet is driven back and forth along the length of a flexible core tube by a
series of solenoids made of thin conductive wire. The magnet piston is kept concentric within the tube
by Maxwell stresses within the ferrofluid, and magnetohydrodynamic levitation, as viscous lift pressure
is created due to its forward velocity. The centering of the magnet reduces shear stresses during pumping
and improves efficiency. We provide a predictive model and capture the transient nonlinear dynamics
of the magnet during operation, leading to a parametric performance curve characterizing the
elastomeric solenoid-driven pump (denoted ESP), enabling goal-driven design. In our experimental
validation of this model, we report a shut-off pressure of 2 — 8 [kPa] and run-out flow rate of 50 —
325 [ml min~1] while subject to deformation of its own length scale, drawing a total of 0.17
watts. This performance is the highest reported work rate for a pump that operates under its own length
scale deformation. We then integrate the pump into an elastomeric chassis and squeeze it through a
tortuous pathway while providing continuous fluid pressure and flow rate; the vehicle then emerges at

the other end and propels itself swimming.
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1. Introduction

A large number of soft robots use fluidic elastomer actuators (FEAs) powered by pumps, e.g.
[1-17]. These pumps, the kearts of soft robots, are typically electrically powered displacement pumps
due to their availability, efficiency, performance curves, and control simplicity. An example of a typical
electrically powered displacement pump is the BTC IIS (Parker-Hannifin) which is rigid and bulky.
When used, these types of pumps necessitate centralizing them, routing the pressurized fluid via long
channel lengths to the actuator locations, and use valving to control when they are pressurized, as
evident in characteristic works such as Tolley et al. [18] and Aubin et al. [19].

The use of pumps with mechanical properties more similar to FEAs would allow for the
decentralization and distribution of displacement pumps across the volume of soft robots. The benefits
of this approach would be numerous: (i) the number of pumps in one machine could be increased for
faster and more forceful robots; (ii) they could be placed in closer proximity to actuators for improved
efficiency; (iii) the number of valves could potentially be reduced for smaller form factors; (iv) most
importantly, the beneficial compliance of soft robots would be maintained.

In this regard, there are several promising and elegant examples of pumps made entirely of
compliant materials for use in soft robots, such as that of Cacciucolo et al. [20], Diteesawat et al. [21].
Other examples [13,22-29] offer the potential for efficient, distributed fluidic actuation or analogous
approaches to soft displacement and rotary pumps [30—44] and, while they all incorporate soft materials
or could be envisioned as a viable pumping solution for soft robotic application; none report
performance under deformation, limiting their practical application. Thus, there still remains an
important need for a compliant displacement pump that offers high flow rates, ¢ = 0(10%)[ml min~1],
and pressures, p = 0(10%)[Pa], at a system work point (i.e. system and pump curve intersection)
compatible with human scale FEA systems, 0(10~! — 10°)[m]. Further, scalable and continuous
performance under quasi-static or dynamic deformation should also be a feature of this pump to

facilitate technology transfer.
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The major challenge facing the development of a deformable displacement pump is the need to
maintain a seal under deformation. This means maintaining a separation between the high and low
potential fluid while providing a physical gap, on the order of the local curvature, between adjacent
interacting components (e.g., an impeller or piston, or equivalent within the housing, to avoid
mechanical jamming). In our work, we use ferrofluids to manage this gap. Therefore, of special
relevance to this work is research regarding ferrofluids' use as the medium in making a fluidic seal in
either journal bearings [45—49] and other rigid applications, for example, [S0—55], to name just a few.
In addition, examination of rigid ferrofluid-based pumps, such as [56-61], exemplifies the inherent
limitations in extending the notion of a fluidic seal to the displacing component being made entirely of
liquid, i.e., making a liquid piston or vane; whereby relying on cohesion forces (i.e., surface tension) to
generate appreciable pressure gradients Ap = 0(10°)[kPa], and as these are inversely related to gap
width, we have to operate in gap regimes that are too narrow for utility, resulting in very low flow rates
less than ¢ = 0(10~1)[ml min~1].

This paper explores a novel approach to making soft robotic hearts, whereby the traditional
concept of ferrofluid gap management is extended to loosely fitted magnetic cores that act as pistons
and are centered by leveraging magnetohydrodynamic lubrication. The ferrofluid coating centers the
core as it moves along the flexible tube and forms a seal, bridging over a specified physical gap of C =
0.25[mm], selected as such to allow the magnetic core in our system to travel without jamming as the
pump takes on a radius of curvature of its own length scale, R, < 100[mm]. Further, we provide the
scaling laws for magnetohydrodynamic lubrication mechanism in such systems with respect to pressure,
flow rate, size, and radius of curvature, thus proposing a scalable principle mechanism for future
advances in soft-pump technology.

While the field of hydrodynamic lubrication has been studied extensively over the years, with
or without magnetic forces involvement, the nonlinear nature of the physics governing such systems
caused prior efforts to avoid explicit dynamic solutions of the lubrication layer thickness evolution over
time. Therefore, these efforts usually set the lubrication layer as constant [62,63], or consider time not

as an independent variable but rather as an input parameter, setting eccentricity and rate of change as
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constant [64,65]; resulting in a static problem governed by an elliptical equation. Others use planar
configurations [63,66], focus on experimental and numerical examination [63,66,67], or a combination
of the above.

In this paper, we present an approximate explicit solution of the predictive model for our soft
robotic heart that uses perturbation theory to capture the nonlinear dynamics of magnetohydrodynamic
lubrication in a non-planar configuration. We then experimentally demonstrate that this elastomeric
solenoid-driven pump (ESP) can maintain continuous performance under large deformation, i.e., up to
30% in axial strain and a radius of curvature of its own length scale; as well as supply the design rules
to correlate physical parameters to the desired deformation.

In Fig. 1, we provide a visualization of novelty; we show the proposed ESP operating at the
largest work point yet reported for pumps that continue to operate while deformed (for literature
comparison details, see SI appendix A.1). Last, we provide the insight and scaling laws required to

produce a goal-driven design of this novel pump system, tailored to soft robotics unique challenges.
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Fig. 1. Shut-off (max pressure no flow) Vs. Run-out (max flow now back-pressure)
performance of comparable state-of-the-art systems. Visualization of novelty, largest work-point
reported to date for pumps that operate under large deformations (of its own length scale). All other
pump technologies in its performance order-of-magnitude are non-deformable pumps.
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2. Experimental Design
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Fig. 2. Hlustration of the elastomeric solenoid-driven pump (ESP) configuration used in both
modeling and experiments. (a) A three-dimensional model with key components and physical
quantities. (b) Workbench setup used in the acquisition of experimental data, Inset illustrates an
exploded view of the internal structure of an ESP with key top-level components. (c) Cross-section view
of ESP; black frame indicates the focus of next figure, Fig. 3. (d) & (e) Cross-section view of ESP in
operation. Snapshots of magnetic core right and left heading strokes with an indication for the state of
the one-directional valves, red and blue fluid lines indicate high and low pressure, respectively. (f)
Hllustrative image of our designed ESP under deformation (bending) showing the loosely fitted magnetic
core jamming upon exceeding the design-intended limit for the radius of curvature R, = 100[mm];
thus emphasizing the particular importance of a goal-driven design for rigid components in our system.
(g) Visualization of pump potency, generating a free jet, with flow rate measured at q =
320 [ml min™1].

Figure 2 presents the studied configuration of an elastically compliant soft robot heart, the ESP.

In fig. 2a, we show a three-dimensional section cut and present our system's fundamental physical
quantities at work. By applying current to the solenoid coil, we generate a magnetic field ECO”,

attracting a rigid permanent magnetic core of field §m, and driving it at velocity i, via the dipole-
dipole interaction. This core (interchangeably denoted the magnetic piston core) is sheathed with a layer
of ferrofluid (FerroTec EFH1), in which hydrodynamic lubrication generates viscous pressure p by the
forward motion, centering the core and preventing contact with the walls, addressed in detail in analysis
section 4.1.

Fig. 2b presents the experimental workbench setup used to measure the pump performance
curve outside a robotic system. We show the ESP connected to fluid reservoirs: one at the inlet and one
at the outlet. The outlet tubing is fitted with a flowmeter (Renesas, FS2012-1020-NG), pressure sensor
(Honeywell, SSCDANNO30PAAAS), and a Precision Flow-Adjustment Valve (McMaster-Carr)
providing back-pressure load. Workbench peripheral components standing in for the robotic system
include: MCU (Arduino Uno) and Keithley 2400 DC power supply, providing the required 0.17[W]
(1[V] and 0.17[A]). Pump assembly dimensions are (width X | engthx height = (40 X 71 x
8) [mm] and is made of silicone urethane elastomer CARBON, INC. SIL 30 with an elastic modulus
of E = 1.8[MPa]. Inset illustrates the pump's internal structure, featuring seven solenoids of wire
density N[winding m~1] = 5760 threaded over the core tube, magnet end stoppers, inlet and outlet

joints, and four unidirectional flow valves. For more details, see SI appendix section A.2.
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In Fig. 2c-2e, we illustrate the role of the four integrated flow valves, creating unidirectional
flow from inlet to outlet as the magnetic core piston is cycled back and forth along the core tube. Red
cross-marks denote which valves are at closed state, and red and blue fluid lines indicate high and low
pressure, respectively.

Particular attention is given to the dimensioning of rigid components within our system, i.e.,
ball bearings, solenoid coils, and the magnetic piston core. The ball bearings (used for the unidirectional
valves) add no constraint on the system's elastic compliance, being in a loose fit of their own length
scale (dpqn = 3.5[mm]). Conversely, the pump's ability to maintain continuous performance under
elastic deformation is restricted by the solid magnet piston core and the number of solenoids, limiting
bending deformation as would a vertebra. First, we set the pump's operational envelope and require
continuous operation under deformation of its own length scale; we thus set the limit for the radius of
curvature to be R, = 100[mm], see illustrated in Fig. 2f. We then select the magnetic piston core to
match the overall scale of the pump assembly, namely a commercially available N52 Neodymium
magnet with a diameter of d,, = 21,,, = 4[mm] and a length [ = 6.315[mm]; in accordance with
which we determine the length of the solenoid coils I, = [. Having established the piston core
dimensions and curvature limits, we can then determine the gap required, C = 0.25[mm], and
respectively the diameter of the enveloping tube inner wall d,, = 21, = 4.5[mm]. For a detailed
discussion on bending strain relation to geometric parameters, see Results section, see SI appendix

section A.3.

3. Experiment Procedure

Using our benchmark setup, see Fig. 2b, we characterize pump performance at both deformed
and free state. We start the system from rest with the flow regulator fully closed and initiate the MCU
supplying 1[V] and 0.17[A] to the solenoid train. We then set the nominal solenoid relay period to
7, = 0.019[sec], i.e., the activation period of a solenoid in a sequence. Based on the viscous-elastic
characteristic time scale t*~mlu/ EZKf (see derivation at analysis section 4.1) we calculate the system
achieving steady-state after a time scale of the order t* =~ 0.113[sec]. To assure we have achieved

steady-state prior to collecting data, we allow the system one minutes to stabilize. We then take pressure
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sensor readings and evaluate flow rate using both a flowmeter and by collecting the outlet spillage for
two minutes in a 1000[ml] glass beaker, and normalize for water density at room temperature.
Repeating this process for twenty measuring points, differentiated by incrementally increasing flow rate
using the flow regulator, we generate the pump performance curve. Experimental data for all plots in
this work represents one-sigma certainty acquired over seven experiments per pump, and five separate
pumps tested.

Fig. 2g offers a visual indication of the pump's potency, generating a free jet with a flow rate
measured at ¢ = 320 [ml min~!]. We report continuous performance in the order of p = 0(1)[kPa]
and ¢ = 0(10%)[ml min~'] over a range of elastic deformation up to a radius of curvature of the
pump's length scale. For a detailed discussion of scaling laws for geometry, deformation, and

performance, please refer to the Analysis and Results sections.

4. Analysis

Providing the theoretical framework for our experimental system, we present two separate
models for two separate governing mechanisms in the system. Together these provide insight and
predict the system's dynamic behavior. The first is the single-phase lubrication layer: we calculate the
friction and pressure inside the fluid seal domain using lubrication theory. Integrating with the force
balance equations, we correlate back-pressure Ap, downstream effective flow velocity u,, and
electromagnetic actuating force f, see equation (1.11). The model assumes Uy, = Upqg, Where Upqg
is the effective average velocity of the magnet during operation. Furthermore, it is assumed that the
product of u,, and core tube-inner cross section gives us the pumped flow rate qg[m!/min] vs pressure
Ap[Kpa]; predicting the nonlinear inverse relation of the pump's performance curve.

The second provides the mechanism correlating the abovementioned prediction with our
experiments, where the actual magnet velocity Up,qg = Zo/7; is held constant fixing the solenoid relay
time actuation 7,.. We are then left to reason the means by which a constant velocity-driven positive
displacement pump provides a varying flow rate. We utilize the equation-based modeling capabilities
of COMSOL Multiphysics 5.5 (see SI appendix section 0), and show the emergence of Taylor-Saffman

instability, i.e., viscous fingers, with a unique stable developed pattern emerging in the presence of the
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system's restoring magnetic force. We thus show how an effective flow rate "leak" dependent on back-

pressure Ap is maintained past the liquid seal to enforce mass conservation.

4.1. Lubrication Theory Modeling, Prediction of the Nonlinear

Inverse Relation of Pressure to Flow Rate.

We begin by formulating the predictive model characterizing the steady-state and dynamic
performance of an ESP. It consists of a cylindrical core tube inside which a levitated magnetic core
coated with ferrofluid. This coating provides a seal capable of maintaining its integrity as the pump
deforms during operation and the viscous pressures required for magnetohydrodynamic levitation to
prevent the solid-fluid piston from jamming during operation. Fig. 3a illustrates the axial cross-section
of the proposed system. Fig. 3b, 3¢ illustrates the magnet axial degrees of freedom; solenoid wire is

omitted for visual clarity.
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Fig. 3. System Geometry including section views for visual clarity. (a) System axial cross-
section with the magnetic core axially centered. (b) lllustrating angular deviation of the magnetic core
from a coaxial position. (c) lllustration of respective parallel deviation. For plates (b) and (c), the
solenoid coil surrounding the core tube was omitted for visual clarity.
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In order to gain insight into the performance of an ESP system and the results presented here,
we aim to model both the magnet dynamics during a stroke in the reciprocating cycle (Fig. 4a, 4b) and
the performance curve describing the pump performance fully (Fig. 4c). Based on the effective

downstream fluid velocity u,, set to be the average magnet forward velocity U4, and knowing core
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tube-inner cross-section, we can calculate the pumped flow rate gq[mlmin~1] versus pressure
Ap[kPal.

We define vector variables using bold letters, direction vectors by hat notation, non-
dimensional variables by capital letters, characteristic values by an asterisk, and respective n order-of-
magnitude by a superscript (n). We define the small parameter € = C/l, where C and [ are magnet-
wall gap at the concentric position, and the magnet length, respectively. We limit axial eccentricity by
the ferrofluid gap A(t) < C, as well as angular misalignment (a(t)l)/2 < C; we set tube radial and
axial deformation due to fluid pressure to be negligible, and finally, both tube and magnetic core do not
rotate about their axis. We consider the one-phase flow of ferrofluid seal in the narrow gap between the
magnetic piston and the bounding tube wall as the magnet is driven forward. We assume the ferrofluid
to be Newtonian and incompressible, and by way of lubrication approximation [65], we formulate our
governing equations for mass V - u = 0, and momentum conservation, in terms of the Stokes equation
Vp = uV?u. We define a moving, gap curvilinear cylindrical frame (TA‘, 0, 2) centered at the magnet
center of mass; where we define the curvilinear gap coordinate 7 to range from ¥ = 0 at the magnetic
core surface (respective to cylindrical 7, in fig. 3a) to ¥ = h at the enveloping tube inner wall

(respective cylindrical r;, in fig. 3a). We then set our system's boundary and initial conditions: the

oh

5 » but does not rotate g (#=0,0,z,t) =w =

magnetic core translates axially u,.(¥ = 0,6,z,t) = —

0, as the magnet is driven forward at u,(# = 0,60, z,t) = u,,; the enveloping tube (i.e. core tube) is at
restu,.(F =h,0,z,t) =0 , ug(¥ = h,0,z,t) =0, u,(¥ = h,6,zt) = 0, and the entire system starts
from rest w,(7,0,z,t =0) =0, ug(#,0,z,t =0) =0, u,(#,6,z,t =0) = 0. Last, we limit for
small tilt angles a(t) < 1 as € «< [, and solve to obtain in dimensional form a special case of the

Reynolds equation,

an© 1 a (9p©@ an©
_ ___- 9 (9o (h®)? 4 Um ; (1.1)
at 12udz\ 0z 2 0z

relating the ferrofluid viscous pressure field p(® (6, z, t) with magnet radial position via gap height

h(©(8,z,t). Solving for viscous pressure p® with p{9(6,z = 1/2,t) = Ap,ymp and p (6,2 =
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—1/2,t) = 0, we then provide an explicit form for pressure and axial velocity profiles as dependent on

the movement of the magnet inside the encapsulating core tube,

O (6,7,6) = 12cos 6 OA(t) u <Z2 1

z 1
(1+A(t) cos0)® at ez\212 §> + APpumyp (7 + 5) : (1.2)

(o)(~ 0,2,t) = 1 12cos 6 aA(t) N le? p 2 _ i
Yz \LEAL = 2\ (1 + A(t) cos 6)3 ot z U Ppump 2¢2

7
(i)

and the characteristic scale for pressure p*~uu,,/le? and kinematics of the ferrofluid field

(1.3)

e~C/l~C/ry~uy/u,, . The observed pressure scaling implies very large pressures of the order
0(1/€?) generated by any deviation from the concentric position of the magnet A, and its temporal
transients d1/0T,; Dominating the restoring mechanism and balancing the destabilizing back-pressure
Ap acting to bring the magnet in contact with the wall, stalling the pump under coulombic friction. For
more details, see SI appendix section A.4.

Next, we address the force balance equations governing our system's nonlinear dynamics in
leading order. The magnet force balance equations detail the dynamic balance of Maxwell stress terms,
as are the result of dipole-dipole interaction between magnet and solenoid, with those from viscosity,
gravity, and the rheology, with the latter resulting from the ferrofluid held by the magnetic field of the

permanent magnet,

2 )2 au(o)
z. 9., +f f U af dzled6 — ma, — n(le)?Ap =0,
il r —— ~——
— 0o Jou2 e E 7 p 2 (1.4)
Magnetic dipole 7=0 xternal system ressure drop
Maxwell force Circumferential friction pressure drop acceleration across piston
force, z—axis
© 2m /2
2. 0
T: bao1s T < f —p© cos(9) dz led@) cos(B) + KpleA(t) — may
Magnetic dipole 0 —l2 Ferrofluid  External system
Maxwell force Axial viscous pressure lift elastic acceleration
force force force,F—axis (1 5)
+ yuu,C =0.

Center—of
—pressure
force

Where p and k¢ are the ferrofluid's effective dynamic viscosity and linear spring coefficient,

and y is the center-of-pressure coefficient that relates the forward velocity to the destabilizing normal

force in the 7 direction exerted on the levitated magnetic piston, which acts as an inverted pendulum.



MAGNETOHYDRODYNAMIC LEVITATION 13

For simplicity, we formulate f}, ,_,1, the force applied by the solenoid (marked by index 2) on
the permanent magnet (marked by index 1), using Ampere's model [68—75] to formulate the magnet-
solenoid interaction. We assume the leading-order contribution is attributed to a point-like dipole-dipole
interaction, with negligible correction resulting from mutual induction and magnet geometry (see SI

appendix section A.4.2). We then formulate the magnetic dipole maxwell force,

fb,2—>1 -
N——

Force by the magnetic
field of 2 actingon1

3uotymy NI I, | €323 — 4C2 2(1)? NE Z(£)C222 — 23(t)3 (1.6)
- 4 302 3
4 (,/CZAZ n Z(t)z) (,/62,12 n Z(t)z) 7 (,/CZAZ + Z(t)z)
Force scalar magnitude 7 Z

where uy = 41 - 1077 [N A~?] is the permeability of free space, u,.[1] the relative permeability of the
ferrofluid, m; ,[A m?] the permanent magnet magnetic moment, N[winding m™'] wire coiling
density or the number of windings per unit length assuming all are a single layer winding, I[A] the
current running through the coil, and [.[m] the length of a single solenoid coil.

Under the above assumptions, of downstream fluid velocity u,, equals averaged magnet
forward velocity Up,q4; actuation periodicity can be related to dipole-dipole actuation distance as a

function of time by the sawtooth wave function,

s A A Tt .
Z(t) = upt | 1— o) + ;Arctan <Cot (Z)> ; (1.7)

where T, is the solenoid relay period time, that is the period for the successive coil actuation, and A[1]
the temporal coordinate strain coefficient constraining an upper limit for the magnetic force during
actuation in the proposed simplified model (see SI appendix section A.4.2). Substituting (1.2), (1.3),
(1.6), (1.7) into our force balance equations (1.4), (1.5); setting Appymp = Ap, thus require force
equilibrium between pump and external load; last, applying scaling arguments for magnet length Z =
z /1, gap coordinate R = 7/C, time normalized by effective downstream fluid velocity T, = u,,t/l, gap
height H = h/C, fluid field pressure P = p/p*, and velocities U, = u,/u,,, Uy = ug/uy and U, =

u,/uy, with the measure of eccentricity A intrinsically non-dimensional thus remains unchanged. We
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obtain a non-dimensional leading order force balance in the 7-axis detailing the transient of magnet

position during pumping operation,

2
t\ (24°(Tv) +1) oA(T
= ra)+) Wiy - ¢ o+ oy =0,
ty (1 — AZ(T ))5/2 aTV Ferrofluid Sy;t.lem Cent;’—of
v elastic acceleration  —pressure (18)
Axial viscous pressure lift force term force term force term

force term

With resulting characteristic scales for viscous-elastic time scale t*~mlu/ EZKf the kinematic time
scale ty~l/u,, , and two non-dimensional numbers ¢ = (radial accleration)/
(Elastic forces) = ma/ksC and Y = (Destabilizing pressure)/(Elastic forces) =
YUum/Ks. Using singular asymptotic expansion, we obtain an approximate explicit solution in

leading-order (see SI appendix section A.4.3),

(o= (M) - ()

t t th

peva(t_z) + epTv(t_z)-FTv(F) — wevaG_é) .

Good agreement is evident in predicting the magnet position's time evolution between the

A(T) =

(1.9)

numerical solution of (1.8) and the leading order explicit approximation (1.9), see Fig. 4a.
The z-axis provides us with the pressure to flow rate relation and subsequent performance

curve for elastomeric solenoid-driven pumps,

1 2
B> - - ¢ = 20P =0;
\—
Z%(T,) J1—2%(T,) System Pressure drop
Magnetic dipole yiscous Friction acceleration across piston (1.10)
Maxwell force pressure drop force term term
term term

along with respective non-dimensional numbers f = (maxwell force)/(viscous force) =
3uopymy zNl ImtrZ, v, /212 z5ul and { = (Inertial force)/(viscous force) = ma,/pupml.

The above equations (1.8)(1.10) and (1.9) give rise to three key results. The first, with viscous
friction pressure drop governed by the axial position of the magnetic piston; by manipulating the
viscous-elastic time scale such that t* >» t; = 2(N — 1)1,-, the steady-state, i.e., maximal axial
displacement, can be postponed for the duration of intermediate continuous operation, reducing energy

losses to dissipation. Second, by limiting for Ap = 0, and A(t) —» 0 we simulate the absence of a
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destabilizing force. We then substitute u,, = 0Z/ dt, a, = 0%2Z/dt? , Z(t) = z, — A(0Z/ 0t)t and
m = (m,, + my,) , where my, is the mass of the magnet and m,, = my, ,ump + My ruping being the
pump internal fluid mass and setup tubing fluid mass, respectively; if we then reinstitute scaling
arguments and solve for 7,., we obtain a numerical estimate for minimal relay time 7, ,,,;, required to
travel the distance z, from solenoid-to-solenoid, see Fig, 4b. From it an assessment for max flow rate
possible by our system qumax = (20/Trmin)T(Tm + C)? can then be derived. Above this limit the
magnet strips off the solenoid-train due to viscous shear stresses and inertia, inhibiting magnet
acceleration. Third and most importantly, Solving (1.10) for Ap, substituting u,, = q/mr;2 and (1.9);
then, reinstituting scaling arguments, we obtain the pump pressure evolution Ap(t). Integrating over a
single pumping duty cycle period t4 and averaging over time, we obtain the pump performance curve

Ap,DCa

Appc

ul
=—cz @)

Curve slope
212 NI I 1 1
T Uo Uy TyMy 2V LA Tow

AlPTyzg€? (ZA arctan (cot (nT—Trd) ) —n(A—-2) )3 8 (1.11)

Shut—of f pressure, maximum pressure at q=0

+

ma,
2nC2 '

‘v—'/.
Acceleration
component

With the slope £2(q) governing the form-function of the performance. The full form of the leading-

order solution is provided in SI appendix section A.4.3A.4.4. However, it is of particular interest to

examine  the asymptotic ~ limit when t*/tj; <1 for which Q(q)~q/
2
mrg, |1 —| (agmmrd — yCuq)/Cremrd, | , where Ag is the steady state eccentric position of the
=Ass

magnetic piston, informing qualitative insights into parameters relations' to performance curve

steepness.
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4.2. Pump Performance Curve

Characterizing the performance of an existing system requires knowledge of four key
parameters (4, A, kg, y. The effective linear spring coefficient k¢ and dynamic viscosity p are material
properties of the ferrofluid seal; they do not change with the system and are solely governed by the
material. Opposite to them: the z-axis coordinate strain A[1] and the center-of-pressure coefficient y[1]
are two non-dimensional numbers that are calculated for the specific system based on the shut-off
(maximum pressure, no flow) and run-out (maximal flow, no back-pressure); these change with the
system limit values. Below we present theoretical and experimental results for the given benchmark
system. The dynamic viscosity 4 = 0.006[Pa sec] is set constant based on the carrier fluid. The z-axis
temporal coordinate strain A = 0.6797[1] was derived from (1.11), substituting the shut-off pressure
and solving for A[1]. The effective linear spring coefficient was experimentally evaluated to be kf =
0.667[N m~1], and last, the center-of-pressure coefficient y = 2255[1] as was calculated from (1.11)
substituting Ap pc = Ap = 0, ¢ = Gmax and solving for y; for more details see SI appendix section
A.S.

In Fig. 4a, we plot the evolution of eccentricity A(T;,) over solenoid cycles T,,, in units of
solenoid relay time periods, as zy = l and Uy, = Upqg. Color transition from dark to light denote an
increase in Y value and respective steady-state flow rate qos[ml min~1]. We show in intervals of
|Alss| = 0.25 how for P < 1, the value Y and |A45| = |A(00)| matches; whereas transitioning from
|4ss| = 0.75 to |Ags| = 1 requires a disproportionate increase in Y and respectively g, an attribute of

the exponential decay nature of A(T,) as it approaches its limit at unity.

In Fig. 4b, we compare theoretical approximation to experimental results for the minimal relay
time of our experimental setup. With a total accelerated mass m = (m,,, + m,,) = 0.009[kg], we solve
(1.10) for 7, as discussed in the concluding paragraph of section 4.1 and obtain a theoretical
approximate T, minrheo = 0.0182[sec]. Good agreement is seen compared with the experimental
minimal relay time T, ;in exp = 0.0188 £ 0.0007 [sec] at pump run-out; This relay time corresponds

to a maximal pumping duty cycle, i.e., the frequency of the magnet to completing an entire pumping
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cycle fg =1/14 = 44+ 0.16[Hz], at which the maximal flow rate of g4 = 320[ml/min] is

obtained. For more details, see SI appendix A.S5.

In Fig. 4c, we focus on the pump performance curve at an unstrained state. We present the
experimental data with (solid black) and without (solid red) the ferrofluid coating, showcasing the
fluidic seal's merit, without which the pump is rendered useless. Further, reasoning the form of the
performance curve, we observe how as flow rate increase from qg; = 50[ml min™1] (respective to 1 ~

1), t0 @ss = Gmax = 320[ml min~1] (respective to Y ~ 6.8), the diminishing incremental increase in

A to unity compounded with the singularity of the curve slope £2(q) o 1/4/1 — A% result in a nonlinear
increase in curve gradient; reasoning the form of the performance curve. Good agreement is evident
between model prediction (solid blue) and experimental results (solid black) evaluating system

performance curve.

Last, in Fig. 4d, we experimentally evaluate pump efficiency n = (Solenoid input power)/
(fluid power) = pqss/Velg, where Vg[V] and I4[A] are the voltage and current measured at the
solenoid's inlet, respectively. We show current system attain a peak efficiency of n =~ 12.5% at qq5 =

225[ml min~1] and respective back pressure Ap ~ 6[kPa].
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Fig. 4. Numerical, experimental, and theoretical results of magnet dynamics and pump
performance curve. (a) The time evolution of magnet eccentricity from an initial concentric position
(at 1 = 0) for different values of Y = ypum/Ks = YUZo/KsTy, by varying the relay time period Ty.
Presented is a quantitative comparison between the numerical solution (dashed black) of the exact
expression (1.8) and its explicit leading-order asymptotic approximation (1.9) in solid lines. (b)
Comparison of theoretical (pale blue) and experimental (black) minimal relay time Ty pin. In pale blue,
the solution to equation (1.10) under specified conditions for minimal relay time. The horizontal dashed
line represents the distance between one solenoid to the next (ZO —Z(t))/A = 6.315[mm]; the
intersecting vertical dashed line informs magnet's minimal travel time. Solid black line indicates the
experimental approximation of relay time based on pump run-out, Tpminexp = 0.0188 £
0.0007 [sec]; Error is determined based on flow sensor specifications. (c) Comparison of theoretical
(pale blue) and experimental pump performance curve at unstrained state; with (solid black) and
without (solid red) the ferrofluid coating. Marked thresholds indicate pump run-out and shut-off. (d)
of pump efficiency defined n = (Solenoid input power)/
(fluid power) = pqgs/Vils, with peak efficiency of n ~ 12.5% reached at qss ~ 225[ml min~1]
(corresponding to a back-pressure Ap = 6[kPa] when intersected with Panel (c)). Error bands for
Panels (c) and (d) indicate a 68% confidence (one standard deviation) in the mean based on seven
experiments over five separate pumps.

Experimental  characterization

Several insights and design guidelines emerge from the good agreement between experimental

results and the explicit approximation of equation (1.11): the characteristic scale f =

(maxwell force)/(viscous force) = 3uopymy ;NI 13, T, /21> z5ul governs design parameter

requirements from the individual solenoid coils; such as f > 1 is a sufficient condition to assure the
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pump does not stall under the back-pressure generated by the embodied system it drives. { =
(Inertial force)/(viscous force) = ma,/uu,,nl and o = (radial accleration)/

(Elastic forces) = ma;/ksC indicates system susceptibility to external accelerations, and as long as

{ < 1and g < 1 are maintained, any applied external accelerations to the embodied system will have

no appreciable effect on pump performance. The Maxwell pressure ‘(2n2u0urrrm1_ZN lI72,/

AlPTyz¢e?) ((ZA arctan (cot (?) ) —m(A-2) )_3 — 1/8n3) establishes a clear relation

between ESP parameters informing parameters to optimize pump pressure, based upon system,

material, and geometric restrictions. Finally, the asymptotic pump performance slope Q(q)~q/

2 o L .
rZ, \/ 1- ((afmm‘a, —vCuq) /CKthra,) , qualitatively indicates parameters' relation to curve

steepness. To conclude, we thus offer a complete set of guidelines for the design of ESPs using goal-

oriented principles.

4.3. Stable Patterns of Taylor-Saffman Instabilities Under

Restoring Magnetic Force

Next, we analyze the second mechanism governing our system,; correlating the abovementioned
prediction with our experiments. In our experimental system, magnet velocity Upmqq = Zo/7, is held
constant, dictated by the constant relay frequency f, = 1/7,; thus the overall flow rate flow would
supposedly be maintained at Gmay = Gmag = UmagThs - However, flow rate q[mlmin~'] decay

inversely with back-pressure Ap, as predicted by (1.11). We now turn to investigate and reason the
means by which a constant velocity-driven positive displacement pump provides a varying flow rate q.
Utilizing the equation-based modeling capabilities of COMSOL Multiphysics 5.5, we investigate the
2D flow within a Hele-Shaw cell with a variable height (for more details, see SI section A.6). Based on
previous work [76-78], we investigate the emergence of Saffman—Taylor instability, i.e., viscous
fingers, along the magnet length. In figure 5, we present a system illustration examining the transient

evolution of the ferrofluid seal front from both a 2D top view and 3D projection. Snapshots show the



MAGNETOHYDRODYNAMIC LEVITATION 20

system at optimal work point at g, ~ 225 [ml min™1] respective to ¢ = 4.8 and |A¢| — 1; ferrofluid
is denoted in dark gray, pumped fluid in pale blue. In panel (b) we show the emergence of distinct
viscous finger structures, the Saffman-Taylor instability; panel (c), viscous fingers complete growth
prior to seal breach. Last, in panel (d), we show a stable oscillating viscous finger pattern; starting at
t > 0(t")[sec]. The pattern oscillates respective to solenoid train actuation frequency and is
maintained over time by force equilibrium between viscous and Maxwell force resultant.

Through this approximate constant cross-section breach in ferrofluid seal — pale blue extension
reaching from z = 0 to z = [, the ESP can maintain continuous operation under varying back-pressure

without stalling.

( a Permanent
Ferrofiuid Magnet

t= 0.011sec]

Selenoid Coil

—1/2 Opqrat!‘ona[
Fluid

(C) t ~ 0.022[sec]

o e
=) o

{ 0
z[m] z|m|

Fig. 5. Numerical simulation results for ferrofluid seal dynamics. Presented snapshots
examine ferrofluid seal front evolution for the system at optimal work point, qss ~ 225 [ml min™1]
with respective parameters Y = 4.8 and |Asg| = 1. Ferrofluid is denoted by dark gray, pumped fluid
in pale blue. (a) Examined configuration illustration showing dimensional notation. The inner core tube
diameter (red) and magnet outer diameter (green) are visualized to clarify the coordinate mapping in
the subsequent panels. (b) The emergence of distinct viscous fingers (Saffman-Taylor instability) at
t = 0.011[sec]. (c) Snapshot of seal front at t = 0.022[sec], viscous fingers complete growth prior to
seal breach. (d) The seal front is kept in stable oscillations past t > O(t*)[sec] by force equilibrium
between viscous and Maxwell force resultants'. For the FEM model used in plates (a) through (d), see
SI appendix section A.6.



MAGNETOHYDRODYNAMIC LEVITATION 21

5. Results

We now turn to demonstrate how the above model predictions and insights emerge in an
experimental setup. In Fig. 6, we show the performance curve for an ESP system (constructed within
the limitations of our manufacturing capabilities) evolving as we progress strain conditions. In Fig. 6a.
and 6b, we present the steady-state performance curves under strained conditions for bending and
stretching, respectively (see SI appendix section A.2). It is of particular interest to examine the
geometric-mechanical jamming for pump bending deformation. We develop a simplified geometric
model to determine the bounding limit for the pump bending strain in relation to geometric parameters
or vice versa. Based on our experimental system design, we estimate that mechanical jamming will
occur at a bending angle ¢4, < 2 arct an(2C,/(l/2)) = 21.5[Deg], where C, is the effective magnet
gap at concentric position accounting for magnet rounded corners; for more details, see SI appendix
section A.2. We did not find an equivalent mechanical jamming model for tensile strain since failure
modes beyond 30% resulted from delamination at the seams, resulting from manufacturing
inconsistencies. In Fig. 6a, we see as the pump reaches a bending angle ¢ = 20[Deg], its performance

approaches the point where the run-out and shut-off points intersect where it would seize.
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Fig. 6. Experimental performance curves of ESP under varying strain conditions. Error
bands indicate a 68% confidence (one standard deviation) in the mean based on seven experiments
over five separate pumps, plot markers represent the experimental mean value. (a) Experimental pump
performance curve at unstrained ¢ = 0[Deg] and strained states ¢ = 10,20[Deg]. (b) Experimental
pump performance curve at free state AL /€, = 0 = 0[%] and axially stretched A€ /£, = 0.15,0.3 =
15,30[%].

In Fig. 7, we present a conceptual vision for functionality. Our design implements an ESP as
an apparatus incorporated into a same-scale compliant boat that is forced through an obstruction course
that includes 15% lateral contraction and 20-degree bends. The boat then emerges at the other end of
the course and propels itself forward via the jet generated by the ESP (similarly to the free jet visualized
in Fig. 2f).

We quantify the non-dimensional strain rate to be E = (4¢/£,)/(4t/t*) = 0(107?)[1], and
normalize based on the viscous elastic time scale. We thus relate the strain rate to the governing
mechanisms discussed above and in the Analysis section 4; allowing us to expand the conclusions
regarding performance, mechanical jamming, and hysteresis beyond the proposed scale of this study.
Data used to evaluate strain rate E, is available at SI appendix section A.7 Table A.2.

Initially, we push the embodiment through the obstruction course using the semi-rigid outlet
tube as a flexible pushrod with both inlet and outlet tubes connected. During deployment stages
7b(I) = 7b(IV) we continuously log both pressure and flow rate. In Fig. 7a, we illustrate the
experimental setup; inset illustrates a focused top view of the embodiment structure with top-level
components. Fig. 7b shows the deployment stage (left panel): (I) starting point at rest, (II) squeezing
through a 15% lateral contraction, (I1I) 20-degree positive bend, (IV) 20-degree negative bend. During
(I1) —» (I11), (I11I) = (IV) and past (IV), system reverts to an unstrained state. Next, we present the
start and end positions of the self-propulsion stage (right panel), where the system completes a
swimming task, using a free jet for propulsion (as visualized in Fig. 2g and Movie S1). In Fig. 7c, we
present the real-time performance of the ESP during dynamic deformation. The non-hysteretic nature
of the ESP is evident upon returning to the unstrained state in sections (II) — (III), and past (IV); the
pressure difference past section (IV) corresponds to change in elevation Ap = pgh = 1000-9.81 -

0.10 = 1[kPa]. A real-time video of the system navigating the course is available; see Movie S5, S6.
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Last, we offer an avenue for using the ESP apparatus as a self-sensor to estimate its strained
state defined as @ = €eqv/Emax = Peqv/Pmax <1 and provide a warning mechanism prior to
mechanical jamming. Correcting for back-pressure from the external load, we can plot the dynamic
work-point, i.e. pressure and flow rate at a point in time, and overlay on Fig. 6a; we can then estimate
the equivalent bending ¢, and calculate the strained state ratio ¢, where ¢ = 1 indicates the system
jamming limit. In Fig. 7c, boxed region A (q =~ 180[ml min~1],p =~ 3.1[kPa)) has an equivalent
strain gy, & 10[Deg] respective to a strained state of ¢ = 0.46; whereas regions B (g =
40[mlmin~1],p ~ 1.4[kPa]) and C (q = 23[mlmin~1],p =~ 1.4[kPa]) correspond with the
equivalent strain ¢4, = 20[Deg] for a strained state of ¢ = 0.93, informing proximity to pump

stalling.
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Fig. 7. Experimental setup demonstrating an ESP integrally embodied in a soft robotic
apparatus. The embedded ESP endures axial and angular strain while providing continuous fluid
pressure and flow rate before eventually emerging at the far end. It then completes a swimming task
using free jet propulsion (See jet visualization, Movie S1). (a) Experimental setup, inset illustrates a
focused top view of the embodiment structure with key top-level components. (b) Deployment stage (left)
- Snapshot sequence of embodiment at various stages during deployment: (I) starting point at rest, (1)
lateral deformation squeezing through a 15% contraction, (III) 20-degree positive bend, (IV) 20-degree
negative bend, during (II)—(1ll), (IlI)—(1V) and past (IV) system reverts to an unstrained state. Self-
propulsion stage (right) — start and end positions of self-propulsion post-deployment. (c) Continuous
dynamic performance plotted in real-time during deformation with evaluated non-dimensional strain
rate E = (4€/£4)/(At/t*) = 0(1072)[1]. Boxed regions A,B and C are regions of interest where we
use the ESP for self-sensing to estimate its strained state @ = €eqy/€max = Pequ/Pmax < 1, thus

providing a warning method prior to mechanical jamming, which occurs at @ = 1. Boxed region A
(q = 180[ml min~1],p = 3.1[kPa]) has an equivalent strain of @ = 0.46; whereas regions B (q =
40[ml min~1],p =~ 1.4[kPa]) and C (q =~ 23[mlmin~1],p ~ 1.4[kPa)]) correspond to a strained
state of @ = 0.93.

6. Concluding Remarks

In this work, we tackle the leading component standing in the way of soft robotic systems from
functioning under deformation - the pump. We present a simple, focused experimental demonstration
and a theoretical framework, showing for the first time an elastomeric solenoid-driven pump (denoted
ESP) undergoing deformations of its own length scale 0(1072)[m] while generating pressures and
flow rates in the order of 0(10°)[Pa] and 0(10%)[mlmin~1] for a power consumption of
0(10~1)[W]. The resulting work-point is the largest reported for pumps that operate under large
deformations (of its own length scale) with no appreciable hysteresis.

We observe two governing physical mechanisms in these systems: magnetohydrodynamic
levitation and the Saffman-Taylor instability in the presence of a restoring magnetic force. In addition,
we report the characteristic scales and an explicit leading-order predictive model detailing how the
proposed governing mechanism of magnetohydrodynamic lubrication is scalable with respect to
pressure, flow rate, size, and radius of curvature.

Last, we elucidate a list of avenues for tailoring performance in goal-oriented design: We show
how the restoring force centering the magnetic piston and the maximal pressure generated by the pump
are inversely proportional to the magnet-wall gap squared; evident by the characteristic pressure scale

p* o« 1/C%. We relate ferrofluid's effective dynamic viscosity p and linear spring coefficient Ks to the
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destabilizing force acting on the magnetic piston; whereby in making ¥ o u/ky < 1 we reduce steady-

state eccentricity |14| and with it viscous friction - the leading order source of dissipative energy loss.
We point to a criterion over the non-dimensional numbers { and g, the inertial to viscous force ratios,
such that when { < 1 and p < 1, external accelerations exerted on the pump will have no appreciable
effect on performance. We provide minimal criteria sufficient to assure the pump does not stall under
the back-pressure, so long that the non-dimensional number £, the Maxwell to viscous force ratio, f >

1. We show the ESP apparatus as a sensor to estimate its own strained state, defined ¢ = .4y, /Emax <

1, and provide a warning mechanism prior to mechanical jamming due to excessive deformation. Last,
we inform how by manipulating the viscous-elastic time scale to be greater than the pumping duty cycle
t* > 1,4,We can delay the magnetic piston from stabilizing at steady-state maximal eccentricity during
operation, further reducing energy loss and dissipation.

Combined, these provide an explicit set of scaling laws - a toolbox to assist in goal-oriented
design; a first step towards developing a practical deformable pump that will serve as the foundation

for future advances in soft-pump technology.
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Appendix A

A.1.  Table 1 - Comparison of Systems from Different

Technologies and Scales.

Refti. Complient Deformable Pumping Fun-—out, Shut-off, Pump
material (Beported preformance principle Max. Max.  volume
under deformation) flow rate pressure [cmS |
[ml min-l]  [kPa]
25 L N Electroosmotic 0.0012 (X1 0m
33 N N Electrohydro dynamic { EHD,) 14. 042 0.01
41 N N Thermopnieumatic 0.01 049 0.03
4. N N Phase change 0.0061 0.1 0.072
34 N N Electrohydro dynamic { EHD) 0.055 01 009
27 Y N Electromagnetic diffuser 0.135 0245 0.003
36. N N Electrostatic 0.16 20 0.008
3T N N Magnetohydrodynamics 0.0013 0.18 0.16
20 N N Piezoelectric diffuser 23 T4 026
20. Y Y Electrohydro dynamic { EHD,) 6. 14. 12
30 N N Piezoelectric 0.0368 0352 2.
28 T N Bio-microactuator 0.003 0.17 2
38 N N Electrohydro dynamic { EHD) 07 073 S5
3l N N Fotery pump, radial impeller 03 8. 33
24 ¥ N Positive lon migration 423 a2 36
42, N N Diaphragm- prieumatic 0.082 041 6.
35 N N Electroosmotic 0.015 33 9.
44 Y N Monopropellant decomposition 6.4 3 21
30 N N Electro-thermopneumatic 0.03 3 92
43 ki N Magnetic levitation 337 0207 12.
22 N N MCDEA (Mag. Coupled DEA) 800. 13.
This study b Y Elastomenc Solenoid -dnven pump {ESP) 325 8 23
AL ¥ N Combustion 40. 40.
21 ki N Electro- pneumatic 161. 234 40
43. N N Monopropellant decomposition 11. 241 130.
32 ¥ N Pneumatic 430, 12 500.

! Data presented herein is based on information reported or derived implicitly via images and figures when no
such information was provided explicitly. Accordingly, some data may vary by a factor. However, great care
was taken to ensure that the critical parameters associated with a given system are identified to properly position

it in the correct scale.

TABLE. A.1. Characterization of performance for comparable state-of-the-art pumping

solutions’, used in figure 1.
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A.2.  Experimental System Design and Setup.

A.2.1. Fabrication Process of the ESP.

The proprietary urethane methacrylate resin was a proprietary formulation (UMA 90, Carbon
3D, Inc.) 3D-printed on a Carbon 3D M1 printer. UMA 90 was used to fabricate coil guides. We then
wind a copper wire (diameter: 250 [um]) at a winding density of N = 5760 [Coils/m]. In order to
control the magnet piston, seven coils sheath the center tube of the ESP. A cylindrical neodymium
magnet (N52, length: 6.315 [mm], diameter: 4 [mm]) is inserted into a center tube (diameter:
4.5 [mm], length: 50 [mm]). Sealing the gap (250 [um]) between the core center tube and the
neodymium magnet, we use FerroTec, EFH1 ferrofluid to coat the magnet, creating a liquid seal. Due
to the magnetic field from the permanent magnet, i.e., the magnetic piston core, ferrofluid is
automatically localizing around and is transported with the piston core during pumping operation.

The silicone-urethane resin was a proprietary formulation (SIL 30, Carbon 3D, Inc.) 3D-printed
on a Carbon 3D M1 printer. Three parts of the ESP pump were 3D-printed (the top, bottom, and center
tube). The 3D-printed parts were thermally cured in the oven (8 [hr] at 120 [°C]). Four stainless steel
balls (diameter: = 3.5[mm]) were placed at the one-way ball valve area (see main text, section 2, Fig.
2¢). The same SIL 30 was used to glue the top and bottom ESP parts. SIL 30 is placed at the bottom
part and covered by the top part; we then put it in the oven for gluing (8 [hr] at 120 [°C]). The center

tube is then glued at the center of the ESP part by using SIL 30 and thermally cured in the oven again.

A.2.2. ESP Performance Measurement.

To measure the ESP performance, a regulator, flowmeter (Renesas, FS2012-1020-NG), and
pressure sensor (Honeywell Sensing and Productivity Solutions, SSCDANNO30PAAAYS) are required.
Fig. 2b (see main text, section 2) shows the connection between these three components. The flowmeter
and regulator are connected in serial after the pump outlet. A Y-connector is used between the pump
outlet and the flowmeter to connect the pressure sensor. In order to control the regulator based on the

setup, we measured the flow rate and pressure in real-time. In order to measure the performance of ESP,



(@)

MAGNETOHYDRODYNAMIC LEVITATION 5

we measured pressure and flow rate from the fully closed state of the regulator to the fully open state
by gradually opening the regulator. Based on the viscous-elastic characteristic time scale t*~mlu/ EZKf
(see derivation section A.4.3) we calculate the system achieving steady-state after a time scale of the
order t* = 0.113[sec]. To assure we have achieved steady-state prior to collecting data, we allow the
system one minute to stabilize. We take pressure sensor readings and evaluate flow rate using both a
flowmeter and by collecting the outlet spillage for two minutes in a 1000[ml] glass beaker; then

normalize for water density at room temperature.

A.2.3. Performance Curve Characterization Under Strained Conditions.

We 3D printed a bending jig and a tensile strain stage to measure the ESP performance under
deformation (bending, tensile strain). In Fig. Sla, we present schematics and definition of the bending
angle ¢[deg] and radius of curvature R.[m]. In Fig. S1b, we show the ESP attached to the bending
Jigs, each with a fixed radius of curvature R. = o (flat), R, = 200 [mm], and R, = 100 [mm].
The bend radius of curvature R, = 200 [mm] and R, = 100 [mm] corresponds to ¢ = 10[Deg]
and ¢ = 20[Deg] bending angle, respectively. The bent ESP performance was measured using the
same setup and method as detailed in section A.2.2.

To test the ESP performance under tensile strain (i.e., stretching), we mounted the 3D printed
stretching stage on a linear stage. ESPs were attached to the stretching stage and stretched while the
linear stage was operating, as shown in Fig. S2. We stretched the ESP up to 30% (A€/4, = 0.3), and

the performance was measured for every 10% increase in tensile strain, see Fig. S2b.

(b)

R, - o R, = 200[mm] R, = 100[mm]
¢ = 0[Deg] o ¢ = 10[Deg] - | b= 20[De:g]“ A

Fig. S1. Experimental setup for ESP performance curve characterization, bending strain. (a)
Schematic illustration of measuring the radius of curvature R, and bending angle ¢. (b) Photos of the
ESP bent on the bending stage with different curvatures.
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(@) (b) M/eoﬂ 0
A8/t =01 \
@ W WAy @ 86/¢ =02
Al/ty =03

Fig. S2. Experimental setup for ESP performance curve characterization, tensile strain. (a)
schematic illustration of measuring the tensile strain (€ ). (b) Photos of the ESP stretched on the
stretching stage with different tensile strains.

A.3.  Geometrical Model for Characterizing Geometrical

Jamming Under Bending.

This section presents a simplified geometric model to determine the bounding limit for pump
bending strain in relation to geometric parameters, see figure S3. We assume mechanical jamming
occurs when the magnet exhausts its radial travel and is now pressed against the inner wall of the core
tube (in light brown); resulting in columbic friction then bringing it to a halt upon contact. We do not
consider the driving maxwell force's ability to overcome coulombic friction, driving the magnetic core
past the point of mechanical contact. Figure S3a presents an illustrative view of our experimental
observation, where at leading-order, the solenoid coil assemblies acting as vertebrae govern the core
tube curvature. Therefore, we propose a simplified deformed state form-function using a discrete two

rigid link model, see Fig. S3b.
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(@) Solenoid Coils Acting
as Vertebrae

Figure. S3. Geometrical Model for characterization of geometrical jamming under bending.
(a) lllustrative view of our experimental observation, where the solenoid coil assemblies are acting as
vertebrae govern the core tube curvature. (b) A simplified discrete two-link model for the deformed
state form-function under bending illustrated at mechanical jamming.

Based on this simplified geometric model, we formulate our geometric mechanical jamming

condition,

2C
Pmax < 2arct an(l/—ze) ~21.5[Deg], (A1)

where C = C + 1y pigger = 0.25[mm] + 0.05[mm] = 0.3[mm] is the effective increase to magnet-
wall gap at the concentric position. Doing so, we take into account the magnet's reduced effective radius
(thus increase in the gap) due to its filleted corners of radius 7y, fj1¢;. Having formulated the two-link
bending angle ¢4, we can now formulate the geometric relation for the pump's radius of curvature at

jamming,

(A1)

b os(®
l—psin <¢) + ZPCOS(Z) — (2C + 1) = 94[mm]

tar(¢)
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Where [, = 0.072[m] is the total pump length.

A4, Lubrication model, Fluid Field Pressure, and Velocity

Profile Solutions.

We formulate a predictive model characterizing the steady-state and dynamic performance of
an ESP; It consists of a cylindrical elastomeric core tube inside which viscous pressure and maxwell
forces levitate a magnetic core coated with ferrofluid. The ferrofluid coating provides a seal that
maintains its integrity as the pump deforms during operation. In addition, the viscous pressure generated
within its fluidic field, resulting from the forward motion of the magnet, maintains the underlying
magnetohydrodynamic levitation, preventing the solid core from coming in contact with the wall and
jamming. Fig. S4 illustrates the modeled geometry. Panel (a) illustrate the axial cross-section of the
proposed system. Panels (b) and (c) illustrate the magnet axial degrees of freedom; panel (d) shows
system geometry definitions used in the cylindrical-to-gap curvilinear coordinate mapping. Last, panel
(e) presents a qualitative illustration of the ferrofluid flow field surrounding the magnet due to the
superimposed pressure-driven (Hagen-Poiseuille), and shear-driven (Couette) flows. The external coil

surrounding the core tube was omitted for visual clarity in panels (b) — (e).
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~n
=

(@ > (d)

Core Solenoid Coil

d Guide Oparational
Fluid

Permanent Ferrofluid

(b)

Section B — B b= = Section A — A

Magnet
i h{8,z.t)
= (e) u(f,6,t)
Investigated
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ra— ii

Section A— A

Section B — B

Figure. S4. System schematic Geometry and section views for visual clarity. (a) System axial
cross-section with the magnetic core axially centered. (b) lllustrating angular deviation of the magnetic
core from a coaxial position. (c) lllustration of respective parallel deviation. For plates (b) and (c), the
Solenoid coil surrounding the core tube was omitted for visual clarity. (d) illustration of system
geometric definitions used in the Magnetic piston-to-gap curvilinear coordinate mapping. (e)
Qualitative illustration of ferrofluid flow field surrounding magnet due to superimposed pressure-
driven (Hagen-Poiseuille) and shear-driven (Couette) flows. The external coil surrounding the tube in
panels (b)-(e) were omitted for visual clarity.

We define vector variables using bold letters, direction vectors by hat notation, non-dimensional
variables by capital letters, characteristic values by an asterisk, and superscript (n) denoting the n™
order of magnitude. We define a curvilinear frame (X;, ¥, Z;) following the curvature of the encasing
core tube (inner radius r,,[m] and external radius 7, [m]), where Z;, it the direction tangent to the core
tube axis, and X; the bi-normal parallel to the horizon. We define a moving, gap-curvilinear cylindrical
frame (12”, 0, 2) centered at the magnet center of mass; the magnet has a radius 7;,[m], a length [[m] and
a mass m[kg]. We assign the gap height coordinate # = r — 1;, ranging from [0, h(6, z, t)], where
r[m] is the radius from the cylindrical moving frame (panel (e) segment AE) and h(6, z, t)[m] is gap

height (panel (e¢) segment DE). We define the deviation of the magnet axis from the tube axis by
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Az, O[1] = 4(®) —z/(1/2) t ar(a(t)) , Where A (¢)[1] is the ratio of the parallel shift to the ideal
gap width C[m], and the second term stands for the Z axis dependence of the gap as resulting from the
tilting of the magnet by angle a(t)[rad] as a function of time. We define App,mp[Pa] as the pressure
drop across the magnet along the Z axis from end to end. The magnet is traveling at a velocity u,, =
Zo /T4 Where zg[m] is the distance between the centers of the magnetic moment of the permanent
magnet m4[//T] and solenoid coil m, [/ /T], and T4 = 1/f, is the duty cycle period for the successive
coil actuation at frequency f;[Hz]. Each coil is characterized by: the number of turns per unit meter
N[1/m] assuming a single layer winding, the permeability of free space uo[N/A?], the relative
permeability p,.[1] in the effective volume where the magnetic field is in effect, and the current flowing
through it I[A]. External forces acting on the magnet include the dipole-dipole interaction f, ,_,1 [N],
gravity's acceleration g = (g,, 0, g,)[m/s?], and the rheological influences of the ferrofluid due to
viscous friction formulated by dynamic viscosity u[Pa - s] and the distributed magnetic volume force
modeled using a linear spring model and coefficient k¢ [N /m].

In Fig. S4d, we determine the magnet-wall gap h(6, z, t); we define the gap using a moving

coordinate system translating with the inside cylinder, i.e., the magnetic piston core,

Gap measure in S —

h(9,2,1) =1y = 7in = gap curvlinear coordinate =DE=AE-A4

(A2)

=r,,edcos0 + \/(rm(l + 6))2 — (rmel)? + (rpedcos 6)? — 1y,

where € = C/l~C /1, < 1 our system's small parameter, with C[m] and [[m] standing for magnet-
wall gap at the concentric position, and the magnet length respectively. We limit axial eccentricity by
the magnet-wall gap for both parallel A(t) < C, and angular misalignment (a(t)l)/2 < C; core tube
radial and axial dimensions do not deform due to fluid pressure, and both tube and magnetic piston core
do not rotate.

In the narrow gap between the magnetic piston and the bounding tube wall, we consider the
internal flow of ferrofluid to be one-phase, Newtonian, and incompressible as the magnet is driven

forward. Next, we set our normalized variables and coordinates,
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u,mjsec UglMm/sec Uu,-|m\sec
g, 2 tlmsec o uglm/sec] _ wplm\sec]

U U, u,
z ¥ T t upt t

2= R=Egree bhERpET TEE

€ v f (A.3)

h h p APpump

H=—~— == APy =
C le’ p* ’ pump p*

We note that the angular coordinate 8 and the magnet eccentricity A(z, t) are intrinsically non-
dimensional and require no additional normalization.
The fluid motion within the gap is governed by the momentum and mass equations under the

lubrication approximation,

2 PO S PO aP(°>+aZUZ(°)
) e T oz oR? '’

ou©  oy© (A4)
and r Z_ =0

oR EYA ’

with emergent characteristic scales for pressure p*~uu,,/le? and ferrofluid kinematics e~C/I~C/
Tm~Ur /Uy, from order-of-magnitude analysis. Next, we Set our system's boundary and initial

conditions. In dimensional form, these are: the magnetic core translates axially u,.(# = 0,0, z,t) =

oh

—o but does not rotate ug(#=0,0,z,t) =w =0, as the magnet is driven forward at

u,(f =0,60,z,t) = u,, ; the enveloping tube (i.e., core tube) is at rest u,.(# =h,0,z,t) =0,
ug(#=nh,0,z,t) =0, u,(¥ = h,0,z,t) =0, and the entire system starts from rest u,(#,6,z,t =
0)=0, ug(#,0,z,t =0) =0, u,(# 6,z t = 0) = 0. With these defined, we then substitute scaling
arguments and begin by solving the Z-axis equation to gain the axial velocity profile inside the

ferrofluid gap in non-dimensional form,

© 1P e _pry Ry
Z T2 07 H ' (A.5)
hagen—poiseuille Couette flow
flow

Substituting (A.5) into the continuity equation from (A.4) and solving for the gap radial

direction, we obtain,
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1 92P© 19P© gH
(0 3 2 3 R2 2
=—— 2R°> —3HR“+H +— -— —H
r 12 072 ( ) 4 07 az( ) (A6)
L1 10H 1 R? '
207 H?)"
Implementing the magnetic core axial translation boundary condition,
J0H i
U-(R=0,0,Z,T,) = _O_Tv ) Uy = €Uy (A7)
We attain a special form of the Reynolds equation from general lubrication theory,
oH 1 02P® . oP© OH 2y 4 LOH
oT, _12 072 4 0Z 9Z 20z’ (A8)
10 (oP©
‘1zaz< 9z (H3)>
where in leading order,
H® = A(Z,T,)cos®+ 1+ 0(62)
Z[
Change due to
parallel Chang.e due
shift to tilt
Substituting we write,
HO =1+| A(T)[] —2Ztaqa(T,)) |cosO, (A.10)
Change due to change due
Parallel to tilt
shift
limiting for the case of small tilt angles a(t) < 1 as C < [,
HO@®,7,)=1+ A(T,) cosO.
CharMe to [A.ll)
Parallel
shift

Substituting, and integrating twice over Z, as H(® # H(®(Z) as the change due to tilt was

rendered negligible,

12 cos @ AT (Z% 1
PO©,7,T,) = (=

1
—— |+ AP (Z +—). A12
(1+2,(T,) cos®)’ 9Ty 8) Py 2 (a12)

Substituting (A.12) back to (A.5), we obtain the Z-axis velocity component in non-dimensional

form,
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UZ(O) (RI OI Zl Tv)
_ 1( 12cos®  4(T)
2 (1 + 4)(T) cos @)3 aT,

hagen—poiseuille
flow

R
Z+ APpump> (R? — HOR) —zotl (A13)

N————————
Couette flow

Observing the above pressure (A.12) profile, two key insights crucial to understanding the
underlying physics of ESP systems become evident. First, we point to the pressure scaling in our system
p*~uu,, /le?, from which it is evident that we are to expect very large pressure gradients of the order
0(1/€?) respective to wall-magnet gap. Second, we note the nonlinearity related to the product of

eccentric A (T) and its transient dA;,(T)/0T,, as evident by the pressure equation (A.13); specifically,

its circumferential asymmetric distribution, where high pressures concentrate where the magnetic core
nears the wall. Figure S5a shows the circumferential uniform pressure in the case of a concentric
magnetic core, whereas Fig. S5b and S5¢ show the development of the asymmetry in the pressure profile
as it translates from a concentric position.

With these insights combined, it becomes evident that any deviation from the concentric
position will generate a non-proportional increase in pressure of the order of 0(1/€2) focused at the
narrowing gap; resulting in a lift force to restore the magnetic core to concentric position. This self-
correcting mechanism of Magnetohydrodynamic levitation (magneto, as Maxwell forces are employed
to drive the magnetic piston), constitutes the underlying physics responsible for offsetting the
destabilizing effect of the back-pressure Ap the magnetic piston, acting as an inverted pendulum.
Absent of this mechanism, any back-pressure acting on the pump will bring the magnetic piston to
contact the wall; the resulting contact then introduces coulomb friction, leading to increased energy
losses to dissipation and subsequent reduction in efficiency and performance, and may eventually lead
to stalling the pump entirely.

Above, we discuss the importance of the circumferential pressure gradient in generating force
equilibrium and stopping the magnet core from coming into contact with the wall. Next, we examine
the importance of eccentricity on pump performance. To do so, we examine the axial velocity profiles
(A.13), specifically, the balance between the pressure-driven Hagen-Poiseuille flow term and the

shearing Couette flow. This balance, required to uphold mass conservation, governs the emergence of



(b)
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the necessary secondary backflow near the wall when the magnet-wall gap narrows, generating steep

near-wall velocity gradients, as is evident in figure S6(a-c). Considering energy dissipation is

proportional to the spatial velocity gradient near the wall AE;,¢ o shear stress « (0U,/0R)|g=0;

ideally, we would want to optimize the lift pressure in our system based on pressure scale parameters

respective to our system's characteristic back-pressure. Doing so ensures our system will maintain a

position as close as possible to concentric, reducing viscous friction to a minimum and optimizing

performance.

(a
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correspond to the local profile at angle ® = 0,1t/3,2n/3, 1t respectively. The transition from blue to
red indicates the local velocity profile along 7. = —1/2,—1/4,0.1/4,1/2, respectively.

A.4.1. Viscous Pressure Forces.

This section focuses on calculating the system's resistance to the magnetic core forward travel.
Resistance to this motion comes from both pressure drag (hydrostatic terms), and friction drag (the
stress tensor's deviatoric terms). From the pressure field p(o) (6, z, t) perspective, we address friction
drag. We have a core of length [[m] that moves inside a tube, with fluid filling the gap between the

magnetic core and the wall,

2 1/2 au(O)
£ f f w| =2 dz |ledd . (A14)
0 -1/2 or_

Trz=Tzr/ lz=g

shear stress
at the wall

From a force balance perspective, we address the pressure drag. We have a pressure gradient
between the back and front of the piston, resulting from the external load as the magnetic piston core

separates high and low potential fluid,
£ = —n(le)*ap, (A.15)
with Ap the external load back-pressure imposed on the pump relative to the inlet reservoir.
Last, we have the pressure force in the radial direction, mentioned in the closing argument of
section A.4 and visualized in Fig. S5; this is the viscous pressure resulting from the

magnetohydrodynamic lubrication acting as a restoring force centering the core,

2w )2
ff(p) = <f0 f —p©® cos(0) dz led@) cos(B).

-1/2 (A.16)

axial Pressure lift
force

A.4.2. Magnet-Solenoid Leading-Order Model for Dipole-Dipole

Interaction.

This section addresses the magnetic force, i.e., Maxwell force, resulting from the dipole-dipole
interaction of the magnetic piston core (i.e., permanent magnet) and the solenoid coils. We assume both

magnetization effects (mutual induction) and the finite volume effects (the deviation of magnet
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geometry from spherical magnet uniformly magnetized) are negligible compared to the leading order
approximation of a point like dipole-dipole interaction. Limiting the case of @ << 1 such that the
magnetic core remains parallel to the Z-axis during its travel in the core tube, we propose Ampere's
model [68—75], and formulate the magnetic dipole maxwell force,

3oty Imy|Im;|

foaimz =+ L2 (&g - g) + g (B - Ty
L 41|¢|
is the force by
magnetic field 1 (A.17)
acting on 2

a

+ 1 (8- fy) — SE(E -y ) (8- z)),
where o = 4m-1077[N A™?] is the permeability of free space, u,[1] the characteristic relative

permeability of the volume domain where the dipole-dipole interaction takes place (mostly the pumped

fluid, which is water), mq = (0,0, ml,z)[A m?] is the permanent magnet magnetic moment, m, =

0,0, Nl .Inr2, |[Am?] the respective magnetic moment of a solenoid coil, for which
[ —

maz

N[winding m~1] is the wire coiling density or the number of windings per unit length assuming all
are a single layer winding, I[A] is the current running through the coil, and /.[m] the length of a
single solenoid coil; last we define € = (€A, 0,Z(t)) as the distance radius between the magnetic
moment centers.

In calculating the distance between the centers of magnetic moment, we need to isolate our
position in time within a duty cycle of solenoid train actuation. To do so, we correlate between the time

and distance during a cycle,

2(t) = umt, (1= 4),

Zo

(A.18)

whereby the nature of our actuation cycle: the magnet begins at Z(t) = z,, we then turn "on" the
forward-positioned solenoid; the magnet travels at an approximated average velocity of u,, = zy/1,
until it reaches the activated solenoid magnetic moment center; we turn the solenoid "off", and the cycle
repeats with the next forward-positioned solenoid. This sequence reliably describes a sawtooth wave

function,
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A A mt
F(t) = 3~ EArctan <Cot (T—)> (A.19)

Where 1, is a single solenoid relay period, and A[1] is the coordinate strain for the temporal
position #, meaning it strains the time coordinate such that at ¢ = 0 the magnet center is a distance of
7y from the forward-positioned solenoid, and when t = T, its position is (1 — A) - z,. Fig. S7 shows
the magnet position during a duty cycle relative to forward activated ("on") solenoid as a function of
time.

Last, we reason the introduction of the coordinate strain A[1]. Our simplified model (A.17)
possesses a singularity, whereby at |€¢| = 0, as the magnet and solenoid coil magnetic moments coincide
spatially, the Maxwell force scalar 3ugu, |mq||my|/4m|€|* goes to infinity. Correcting for this, we
introduce the abovementioned coordinate strain A[1], such that the magnetic core ending its travel
periodically every t = 1, maintains a fictitiously finite distance. We then evaluate this distance to
produce the actual measured maximum Maxwell force. For details of this evaluation process, see section
AS.1.

Last, in using a point-like dipole-dipole interaction force, it is essential to address the two
hidden assumptions held within and address their implication: first, we assume magnetic moment
centers' distance radius is much greater than the characteristic length of the magnet Z(t) > [; this model
is otherwise only accurate for any distance and any finite magnet size when both dipoles are spherical
magnets. Second, it is assumed that the poles in question cannot occupy the same space, hence the
singularity at Z = 0, where the Maxwell force scalar 3uyu, |m||m,|/4m|€|* goes to infinity. As we
do not strictly uphold either assumption; we propose a correction coefficient in the form of a coordinate
strain A[1], such that the magnetic core, ending its travel periodically every t = 7,., maintains a
fictitious finite distance. We thus accommodate for a realistic maximum force cutoff when the magnet

and solenoid magnetic centers coincide. For details of this evaluation process, see A.5.1.
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FIG. §7. Plot Showing the z-axis distance between magnetic moment centers' of permanent
magnet and solenoid as a function of time during solenoid actuation sequence. The figure follows the
magnetic piston center of mass traveling at an approximated constant velocity u,,, taking t = 1,.[sec]
to travel from one solenoid to the next. The target-solenoid is then disengaged, and the next forward-
positioned solenoid is turned on, and the cycle repeats; the sawtooth wave function Z(t) =

Z (1 —A/2+(A/ n)Arctan(C ot(mt/ T,-))) reliably describes this cycle. In dashed black, we present

a non-strained temporal coordinate A = 1[1], and in pale blue, coordinate strain for the experimental
system used in this study, A = 0.6797[1]. Plotted lines all use the following system parameters w,, =
0.334[m/sec], zo = 0.006315[m] and resulting relay period t, = 0.0188 £+ 0.0007[sec] taken as
t, = 0.019 [sec].

Following, we calculate the magnetic dipole-dipole force expression for the force balance
equations. Substituting the above-defined magnetic moments m, and m, , the distance radius ¢ =
(€CA,0,2(t)), and scaling arguments into (A.17), we obtain the force expression in dimensional form,

fb,2—>1 -
~——

Force by the magnetic
field of 2 actingon1

3oty my Nl Imr2, | C323 — 4C2 %(t)? 0 32(6)C%2% — 23(t)3 (A.20)
- P 38 3
An (,/62/12 n Z(t)Z) (,/62/12 n Z(t)Z) 5 (,/62/12 ¥ z~(t)2)
Force scalar magnitude # 2

Preforming order separation based on our small parameter € = C /L, we obtain the leading order force

term,
0(1):
2
0) _ 3#Olurrnl,zNchT[row A21
b,2-1 - ~ 4 9; 2 )y ;2 ) [ . )
— ) 4 (z(t)) £ 3 2
Force by the magnetic
field of 2 actingon1 Force scalar magnitude

and the first-order correction,
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0(e):
© _ Buopymy ;NI Itrg, _4ac 00 (A22)
b,2-1 . 4 ~(t) ’“,':”“"’ .
— 4m(2(¢)) z 5 2

Force by the magnetic
field of 2 actingon1

An important insight from this order correction is to elucidate the negligibility of the Maxwell

force in our system as a centering force.

A.4.3. Explicit Solution - Singular Perturbation Asymptotic Expansion.

We now analyze system dynamics during the transient phase of the magnetic core prior to
settling at an eccentric equilibrium position. The force balance equation (1.4) (see main text, section

4.1) shows the importance of controlling this transition phase. Our model predicts that the spatial

velocity gradient 9u'® /a7, governing the viscous friction term f027r f_l{jz

u(0u® /07)|._ dz led?, varies
nonlinearly with eccentricity A(t) and its temporal gradient.

Seeking a perturbation solution to the non-dimensional leading order force balance in the 7-
axis detailing the transient magnet position during pumping operation (1.8). In attempting traditional
singular perturbation approaches such as Boundary-Layer Theory or the Method of Multiple Scales, we
encounter significant problems with order separation. In solving this, we propose a generalizable
principle of reformulation and the introduction of a nonlinear evolution small parameter § € [0,1]. We

thus gradually evolve the nonlinearity incrementally until we reach the original form at § = 1.

Reformulating equation (1.8) using this principle we obtain,

t\ (2226 + 1) 1 By
&)a+na-28) or, b T8
v ((1 + )1 - /15))5 V. ferrofluid  External system
axial viscous pressure lift ejl%i?g acc?loe:f; ton
force (A.23)
+ ¥ =0,
Cent;"—of
—pressure
force

with resulting characteristic scales for the viscous-elastic time scale t*~mlu/ Ezkf, the kinematic time

scale t;,~l/u,,, and two non-dimensional numbers ¢ = (radial accleration)/(Elastic forces) =

maz/xrC and Y = (Destabilizing pressure)/(Elastic forces) = yuu,,/kr. The constants y and
f 9 f
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Ky represent the ferrofluid's effective dynamic viscosity and linear spring coefficient, and y the center-
of-pressure coefficient relating back-pressure to the destabilizing force per unit length exerted on the
levitated magnetic piston, which acts as an inverted pendulum.

Next, we address the reduction of the exponent § in the first term, preventing order separation.
We propose a first-order Taylor series approximation,

7800 <((1 F2)(1- 15))3“) =Y st =14 L DS 0D, (A24)

n=0
and introduce a perturbation series of powers of § for our eccentricity solution A(T;,),

A(T,,8) = Z Mn(Ty) - 8 = 2(Ty) + 1 (TS + 0 (62) . (A.25)
n=0

Substituting (A.24) and (A.25) into (A.23) we are now able to obtain order separation;

neglecting order higher then 8! it now reads,

t* 92,

3
5 (—/13 + pA5 —Pag + Eln(lo +1) 13 + 2 AT,

25— 25 + pAo — g

3 3 3
—Epln(lo + 1) 4 +Elpln(/10 + 1) 4 +Eln(ﬂo + 1) 4

3 3 (A.26)
+ 22140 — 5P In(p+ 1)+ Elp In(Ag+1) —pAs + P2 + 44
+t*a/11)+/12 + do + g + g+ 2200 g
t; aTv 0 p lp p 0 l/) 0 0 t; aTv - .
Separating for orders, we write the coefficient equations, with their respective IC,
0(59): v 1 0, +9=0 A27
GO+ agar, TPt =0, (A.27)
where 1,(0) = 0. (A.28)
and,
06Y: 22 4 @ —p+p+1)
. t; aT-‘; 1 0 p l/)
3 t*
=23+ pA% — A3 + Eln(/lo +1)23 + ZFAO_TVA%)
1%
3
.\ —A5 +plo = PAo =5 p (Ao + 1) A9 _, (29

3 3
+5¥ (o + 1) o +5 (Al + 1) A

3 3
5P In(lp+1)+ El/) In(1y+ 1)

Heterogeneous term

where 1,(0) = 0. (A.30)
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The resulting order separation produces in leading order equation, a non-linear ODE reducible

to a canonic Bernoulli ODE, whose explicit solution is,

(o - (M) - o)

* t* t; .

* (A31)
peTvlpG_Z) + epTv<i_¥)+Tv(t_¥) — weTvlp<F)

Ao (Tv) =

The respective first-order correction (A.29) is a linear, first-order, heterogeneous ODE whose
explicit solution is readily available. In Fig. S8, we present a comparison between leading (panel a) and
first-order (panel b) approximation for § = 0.5, along with respective numerical solutions (dashed
black) of the exact expression (1.8) (see main text, section 4.1); First-order approximation shows
evident improvement in convergence to the numerical solution of the exact expression (dashed black),
see Fig. S8b. It is noteworthy to point out that while it is of interest to investigate the convergence rate
of the proposed method for higher orders and over a span of the nonlinear evolution parameter §; within
the scope of this paper, we suffice in using the leading-order approximation, § = 0, as the minimal and
satisfactory expression to capture the transient governing physics from which both our goal of an

explicit pump performance curve expression and insights can be obtained.

@ T —— _ ®)
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E g 04l L PR N ——
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Q g NN ! O = el s i
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Fig. S8. Comparison of the approximate explicit solutions for leading and first-order
corrections, confirming convergence to the respective numerical solution of the exact force balance
expression in the T-axis, equation (1.8), see main text, section 4.1. The time evolution of magnet
position from an initial concentric position (at A =0) for different values of Y = yuuy, /Ky =
YUZo /KTy, by varying the relay time period T,.. Presented is a quantitive comparison between the
numerical solution (dashed black) of the exact expression (A.23) for § = 1 (original force blaalnce
equation) and its explicit leading-order asymptotic approximation (A.31) in solid lines. (a) Leading

order solution. (b) First-order solution. Color gradient of solid lines indicate respective values of P =
[0,0.25,0.5,0.75,0.95].
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A.4.4. Pump Performance Curve.

In this section, we present the step-by-step development of the pump performance curve from
the z-axis force balance equation detail the dynamic balance of Maxwell stress terms, as are the result
of dipole-dipole interaction between magnet and solenoid, with those from viscosity, gravity, and the
rheology, with the latter resulting from the ferrofluid held by the magnetic field of the permanent

magnet,

2 12 au(o)
z: b(g)—qz +f f u af— dzled@ — ma, — T[(lE)zAp =0,
T 0 J-i2 Ly Externals Pressure dro (A.32)
Magnetic dipole 7=0 xternal system ressure drop
Maxwell force Circumferential friction pressure drop acceleration across piston

force, z—axis
and present the full-form leading order slope curve Q(q).

We begin by defining the duty cycle performance curve Ap . as the time-averaged pressure function,
1 (%
Ippe = — f Ap(t) dt | (A33)
Ta Jo

We set 4p = ppyump and calculate our pump pressure or equivalently our equilibrium back-
pressure as a function of time; substituting the explicit forms (1.6)(A.21), (1.3)(A.13) and reinstituting
scaling arguments (A.3) into (1.4)(A.32), we obtain the explicit dimensional form of the z-axis force

balance equation in terms of magnetic core velocity u,,, geometric and material parameters,

3:“0/-lrm1 leCIT[rozw Z#um”l
— - n(le)?dp +——| - ma, — n(le)?Ap
2w Z (t) —_— II_AZ(t) N N~————
hagen—poiseuille External system  Pressure drop [A34)
Magnetic dipole flow Couette flow acceleration across piston
Maxwell force force, z—axis
Circumferential friction pressure drop
=0.

Solving for Ap(t) we obtain our systems performance curve in the form,

3.uoﬂrml,lec1rozw 2mpuy,

27D -2 (A.35)

2mC?

Ap(t) =

Substituting A(t) = A¢(t) with its explicit form (A.31) with ¢ =0 (i.e. No external
acceleration acting on the pump), and reinstituting scaling arguments we obtain the explicit form for
magnet dynamics in our workbench setup. Substitute (A.18) and (A.19) into (A.35) we obtain the

explicit form of Ap(t),
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3”0Hrm1,lecIrozw _ 2azrn 4l#um

; - /AC2.

mt /s
mt 2(pt/t* — pt/t")2
i (A arctan (cot(Tr)) A N 1) \/1 _P2(et et¥/t")
0 2

ap(t) = (A.36)

p (et/t —petd/t)2

Substituting (A.36) into (A.33), then integrating over a single pumping duty cycle period 7,4
and averaging, we obtain the pump performance curve 4p p,

Appc

ul
=T )
Curve slope

(A.37)

212 o, trmy ;NI ITE, 1 _
2 4 .2
Alttyz5€ (ZA arctan (cot (—ﬂrrd) ) —m(A—2)
r

) 3 81 3
Shut—of f pressure, maximum pressure at q=0

ma,
2nc% '

=
Acceleration
component

where the slope function Q(q) governing the form-function of the performance curve is,

Q(q)

Ta(P+1)
b

2 — Dype o — @2 — et
Ty T\
o)

_%d( ld Ta¥

_Ta(-1)
JY +le 2

a—Tay

Ta(P+1)
2 — e 2 \/(1,[) + 1e

Tqd—T
—

ay
— 2y tanh™!

J(w + e T -2y

Tq

Jy+1 (1per‘ti_*¢ —et"

Ta@+1)

— @2 Det

) 20— Dye ©

(A.38)

T4 T4 2
(F-u)
— 1 ,/¢+1>
21— tanh (—m »

Jp+1
—14(p — 1)2

++

It is of particular interest to examine the slope curve Q(q) at its asymptotic limit when t*/t;, <
1. At this limit the center-of-pressure force, which is proportional to magnet kinetics, dominates the
magnetic cores eccentric position; this is the case for systems with fast-moving magnetic pistons and

low ferrofluid viscosity. Our magnet dynamic's governing equation (A.23) becomes algebraic,

& - 0 + Y =0.
. g et

ferrofluid  External system  Center—of [A39)
elastic acceleration —pressure
force force force

Reinstituting scaling arguments, and solving for A,
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*

yu mag t
A=——u, + Cr , (—) & 1.
K K
1 1 v (A.40)
Center—of System
—pressure acceleration
force force

We repeat the process detailed in equations (A.33) - (A.37); this time substituting (A.40) instead

of (A.31), we obtain the asymptotic limit for Q(q) when t*/t;, < 1,

2
Q(q)~q/mré 1 — <(afmnr§v - yCuq)/CKfnr‘%,> , (A41)

=Ass

where A is the steady-state eccentric position of the magnetic piston. This simplified limit-form

informs qualitative insights into parameters relations' to curve steepness.

A.5.  Characterization of System Parameters.

A.5.1. Estimation of Coordinate Strain Parameter A.

To calculate the coordinate strain coefficient, we extract the strain parameter A[1] from the

shut-off pressure by substituting 4p pc = Py of f and g = 0 into (A.37) (equation (1.11) from the

main text, see section 4.1) resulting in,

I 2% popty Trmy NI ITZ, 1 1

shut — 4 _2 37 Q-3

—off Al*rqzye 24 arctan (cot (Z4) ) — (4 — 2 8m
( (cot () -mta-2)

Shut—of f pressure, maximum pressure at q=0
ma,

(A42)

;
2mC?
S

Acceleration

component

substituting the shut-off pressure (i.e., the trivially measured pressure when the outlet is plugged) we
can solve for A[1]. Finally, substituting proposed experimental system parameters and solving, we

obtain our ESP temporal strain coefficient A = 0.6797[1].

A.5.2. Evaluation Minimal Solenoid Relay Time, t,.

In evaluating the minimal solenoid relay time experimentally, we propose two methods. First,

having measured the max flow rate at run-out, qupax = 320 £+ 12 [ml/min] = (5.33 +0.2) -
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107 [m3/sec] we can then calculate the minimal relay time using flow rate definition qq, =

2

20/ Trmin |T| Tm+C | ;withr, = 0.002[m] and zy = 6.315 - 1073[m]. Solving for 7, i, We
Un Inner wall
radius

estimate T, minexp = 0.0188 = 0.0007 [sec] taken as t; minexp & 0.019[sec] for most calculations in
the study. Second, we propose measuring the magnet travel time from the center of one solenoid to the
next using ultrasound scanning. The ultrasound transducer (Philips, L18-5) and the ESP were positioned
in the ultrasound transducer holder, as shown in Fig. S9a and S9b. Holder maintained the constant
distance between the ESP and the ultrasound transducer. In order to conduct the ultrasound scanning
experiment, we constructed a copper solenoid with a 1 [mm] gap at the center as ultrasound cannot
pass through the copper wiring (Fig. S9¢ and S9d). Therefore, the location of the magnet can be
detected. In order to produce an identical magnetic field, the updated coil (i.e., with a one-millimeter
gap at its center) had its number of windings updated so that its radius, coil density, copper wire
diameter, and applied current all remained constant. Figure S9¢ shows the ultrasound images used to
analyze the movement of the magnet. Ultrasound images are captured every 5[ms]; estimating a

nominal relay time of T, pom,exp = 0.020 + 0.005[sec]. The ultrasound and flow rate-based relay time,

agree within 6% nominally.
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Fig. S9. Ultrasound scanning for measuring magnet minimal relay time. (a) Photo of the
ultrasound scanning setup. (b) Schematic illustration of the ultrasound scanning setup. (c) Schematic
illustration of the updated coil with the 1 [mm] gap at its center (d) Image of the assembled ESP used
for ultrasound scanning experiment. (e¢) Ultrasound scanned images and corresponding schematic
illustrations at 0, 10, and 20 [ms] after activating the forward driving solenoid.

A.5.3. Estimation of Ferrofluid Linear Spring Coefficient ;.

Magnetically saturated ferrofluids exhibit the ability to form and hold their shape by an induced
distributed magnetic volume force. To capture this effect in #-axis force balance, see main text section

4.1 equation (1.5), we seek a simplified and sufficient model. We propose a simple linear spring model,

fmag, =K - AT, (A43)

ferro

Where Ar[m] is the radial strain applied to the ferrofluid droplet, and k[N /m] the effective linear
spring coefficient. To measure this effective spring coefficient, we mount an identical magnet as is used
in the experimental setup; to ensure we induce an equivalent distributed magnetic volume force in the
ferrofluid. We then apply FerroTec EFHI ferrofluid to the magnet, forming a node at each pole end.

The nodes in this setup collect at the magnetic poles rather than coat the magnet as they are unrestrained,
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as would be the case inside the ESP core tube; however, it is inconsequential in measuring the spring
coefficient. Using a scale (Mettler Toledo), we measure the weight increase as the micrometer probe
end strains the ferrofluid coat (the end attachment is made of aluminum to avoid magnetic interference).
Fig. S10(a-c) shows the experimental setup, Fig, S10d presents experimental data; the curve informs
parameter Ky as the force measured corresponds to the effective linear spring coefficient. The effective

linear spring coefficient calculated for Ferrotec EFHI in this setup is kf = 0.667[N /m]; error indicates

a 68% confidence (one standard deviation) in the mean based on seven separate experiments.
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Fig. S10. Experimental setup for ferrofluid linear spring coefficient Ky measurement.
(a) experimental setup; micrometer (Mitutoyo), with the AL end attachment used to strain the ferrofluid
nodes. Each node is approximately 0.5 [mm] thick. (b) closeup of the magnet mounting jig. (c) closeup
of probe prior to contact with mounted magnet during an experiment. (d) Experimental measurement
of linear spring coefficient kg. Error bands indicate a 68% confidence (one standard deviation) in the

mean based on seven experiments; markers represent the experimental mean value.
A.5.4. Evaluation of Center-of-pressure Coefficient, y.

In Calculating the center-of-pressure coefficient y[1], we substitute Appc = Ap =0, q =
Gmax 1nto the pump performance curve 4p p, equation (A.37) (main text section 4.1, equation (1.11))
and solve for y. Fig. S11 we present the numerical solution locating zeros, by which we findy =

2255[1].
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Fig. S11. Theoretical evaluation of center-of-pressure coefficient y. Numerical solution for
equation (A.37) solving for y when Ap pc = Ap = 0 and q = quqx. The curve informs parametery,
evaluated aty = 2255[1].

A.6. Numerical Investigation of Viscous Fingering

Phenomena.

Examining the pump performance, we turn to investigate how a constant velocity-driven
positive displacement pump, whereby magnet velocity Up,qg = 2o/, is held constant, provides a
varying flow rate q. Utilizing the equation-based modeling capabilities of COMSOL Multiphysics 5.5,
we investigate the 2D flow within the Hele-Shaw cell with a variable height. We map our gap
curvilinear coordinate system (7, 8, z) onto a 2D cartesian plane z — y, and model the variable Hele-

Shaw cell height by the gap curvilinear coordinate in the 7-axis,

Gap measure in
(0 = y/tn) =T = T = gap curvlinear coordinate

(A.44)
= el cos(y/ry,) + J(rm(l + 6))2 — (hmed)? + (npercos(y/1m))? — 1y ;

for more details on the gap curvilinear coordinate system, see section A.4. The fluid domain consists of
two immiscible Newtonian fluids: the pumped fluid (pale blue), water with dynamic viscosity y; =
0.0008[Pa - sec], and ferrofluid (dark gray) seal, with dynamic viscosity y; = 0.006[Pa - sec]. The
Hele-Shaw cell plane is of width y,;, = 2n1, and length z4,, = | + &1 where r,,[m] is magnet
radius, [[m] is permanent magnet length and §1 = 0.001[m] an arbitrary small added length in the flow

direction for visual clarity such that the ferrofluid seal front starts away from the fluid domain boundary.
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Previous work [76-78] aimed at investigating the emergence of the Saffman-Taylor instability
in constant cross-section Hele-Shaw cells in the presence of pressure-driven flow of displacing low
dynamic viscosity fluid (¢, water) forcing out a resident fluid of higher dynamic viscosity (u,, oil).
We modify the model to address the unique physics prevalent in our system. First, the dipole-dipole
interaction between ferrofluid and both permanent magnet and forward driving solenoid. Second,
solving for a Hele-Shaw cell with a spatially non-uniform gap geometry.

We begin by formulating the conservation of mass for incompressible flow V- u = 0 with u =

(uz, uy) a two-dimensional velocity vector in the z and y axis respectively and the del operator V=

(0/0z,0/0y). We apply conservation of momentum in the form of a modified Darcy's law for porous
media flow u = — EVp + l'l(o), where the permeability tensor is simplified to a gap dependent scalar
k = k = h?(y) /12[m?], the dynamic viscosity yu = u(cy) is a function of the solute concentration
variable by which we differentiate between the fluids (further discussed below), p is the fluid pressure,
and l'[l(,o) = l'll(,(’)l)_)3 + Hl(;(,)z)—a is the adverse Maxwell pressure vector due to magnet-ferrofluid and

solenoid-ferrofluid dipole-dipole interaction averaged over a characteristic length,

( Bﬂolurml,zm&z )
4
Zkce(z,y) 2r(/12 + (1/2)?
f i i 2 sin(4nz/l) dz (an )
0 Jy h(@)n, do
1'11(,01)_)3 — Maxwell pressure ) [A4‘5)
Maxwelllforce, ( Sﬂolurml,ym&y )
. 4
Magnet—Ferrofluid Yk Cf(Z, y) . 27_[( rr% T (l/z)z)
f - (2 )2 Sln(Y/rm) dy 27
o H(Q@2rry J T (O dO
Maxwell pressure
Sﬂoﬂrmz,zm?,,z
B fzkcf(z, y) - 27T(Z(t))4
o u 12 7T h(8)1r d6
0 Maxwell pressure
o, - (249

Maxwell force, 3H0Hrm2,y’r;l3’y
Solenoid—Ferrofluid ny Cf (Z, y) ) ZTL'(Z(t))
o HQ@urm)2 " (2 p(g)r, do

Maxwell pressure

Where m,; = (0.015,0)[m? A] is the permanent magnet magnetic moment, for which |m,| =

HeimaglA/m] - Vinag [m3], with Hiimag the magnetic field strength of the magnet (i.e., magnetic
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piston core), as detailed in the manufacturer datasheet, and V;,,44 the volume of the magnet; m, =

(4.85-107%,0)[m? A] is the magnetic moment of a solenoid coil, |my| = Nl.Inr2,, for which
N[winding m™1] is the wire coiling density or the number of windings per unit length assuming all
are a single layer winding, /[A] is the current running through the coil, and l.[m] the length of a
single solenoid coil; last, m3 = (7.38 - 10™%,0)[m? A] is the magnetic dipole moment of the saturated
ferrofluid, where |mz| = He; ferro[A/M] - Vierro[m3], with H; ferro the magnetic field strength of
the saturated ferrofluid, as detailed in the manufacturer datasheet, and Ve, the volume of the
ferrofluid seal.

Using this simplistic model, we capture the underlying physical phenomena of these far more
complex superimposed dipole-dipole interactions. These simplifications include: neglection of
interfacial tension effects from the choice of particular fluids, neglection of circumferential dipole-
dipole interactions, neglection of capillary action and surface tension, and last we averaging along
characteristic dimensions. All these lend to a stable convergent model at the expense of quantitative
accuracy; an acceptable compromise in the case of this study, as the sole aim of this model is to inform
as to the unique emergence of stable oscillating viscous fingers patterns in the presence of restoring
Maxwell forces under these conditions. We thus reason the means by which a constant velocity-driven
positive displacement pump provides a varying flow rate q; as an effective steady-state flow rate "leak"
is established and maintained past the ferrofluid seal.

In our model, we set viscosity as concentration-dependent u = u(cf); we conveniently follow

Zimmerman and Homsey [77] and propose (1/u)du/dc; = —R such that R =11(M) where M =
U1/ U, is the mobility ratio. This simplified model suggest viscosity decreases exponentially with solute
concentration variable ¢f, such that ¢; = 1 is the viscosity of u; (the less viscous - water) and ¢ = 0,

is the viscosity of u, (higher viscosity - ferrofluid). Solving u(cf) we find the fluid viscosity fucntion

U= .U(Cf) =u, e—cfln(M)‘
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Next, we formulate the solute transport of the fluid interface in the form of an advection-

diffusion equation over the concentration-independent variable ¢¢[1],

dc
q_«,_f

3 V- (DV)cr —u- Ve . (A47)

The dispersion tensor is given by

(apuz + aru?)  (ap — ap)u,u,

O Tl | (148)
(a, — ar)uyu, (aLuy + aTuZ) sec
[lul] [lul]

following in the steps of Coutinho and Alves [76]. We define: the local fluid velocity magnitude of
[lul| = /ug +u? ; the longitudinal dispersive length as a; =D, (U)/U + ay (1 - (uy/U)? —

(uy JU )2), for which the longitudinal dispersion (often simply referred to as dispersion) is empirically

defined according to [79,80] as D, (w) = Dy + (2/105)(C?*u?/D,); the transversal dispersive length
ar = Dy/U defined by the molecular diffusivity Dy = 2.299 - 10~°[m?/sec] (taken to be that of

water at 25[°C]). Last we define U = upqp = % our superficial or characteristic velocity, which
w

is the average leak velocity past the ferrofluid seal; as we infer from the difference between the known
run-out flow rate g, 4, [M>/sec] and the resulting flow rate q[m3/sec] at the outlet.

Concluding our model, we set the boundary and initial conditions for a well-posed problem. Our system
starts from rest setting p(z,y,0) =0, (dp(z,y,t)/0t)|;=o = 0 over the fluid field; for the transport
equation, we define the fluid-fluid interface cf(z,y,0) = (1 —H(z - Zi)) +{f(z,y)ex p—(z—
z;)?/a?) in which H(z — z;) is a Heaviside step function positioned at z; = 0[m], providing the initial
position of the fluid-fluid interface, { = Zgj,, - 107%[m] denotes the size of the random disturbance
initial pattern f(x,y) and last, ¢ = [[m] gives its variance in the z-direction. Finally, we define
boundary conditions for the inlet velocity (—(k/u) 0p/0z)|,—0 = Ujeqx, the ambient pressure at the
outlet p(l,y,t) = 0, and symmetry conditions for the top and bottom walls such that: p(z,0,t) =

p(Z, anm: t) and (ap(z' y; t)/ay)|y=0 = (ap(Z: y' t)/ay)|y=27'[rm~
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Figure S12 presents a system illustration examining the transient evolution of the ferrofluid seal
front from both a 2D top view and 3D projection. Panel (a) shows system schematics, illustrating the
3D to 2D mapping and the 2D fluid domain solved for. Panel (b) - (d) show Snapshots of the system at
optimal work point g =~ 225 [ml min~!] with respective parameters ) = 4.8 and |As| — 1, for
time t =~ 0.011, 0.022 and t >» 0(t") [sec] respectively. Column (I) shows the ferrofluid seal front
evolution in a theoretical system absent of the Maxwell restoring forces; steady-state in this case will
be att — oo as ferrofluid seal will exponentially decay until it is all washed away. Opposing it, in
column (I), we show identical time snapshots; the system achieves a stable oscillating viscous finger
pattern for t > O(t™) at solenoid-train actuation frequency, see Movie S3 and S4.

In conclusion, the qualitative effects of restoring Maxwell forces are evident. First is the
reduction of the leak cross-section (the breach seen in pale blue past the boundary at z = [), leading to
an increase in generated pump pressure. We provide experimental evidence for this conclusion in the
main text, section A.4.4 figure 4c, where we compare performance with (black line) and without (red
line) ferrofluid; respective to column (7/) where the seal is maintained in steady-state, while column (1)
where all ferrofluid is stripped (washed away) from the magnet in the absence of restoring Maxwell
forces. Second, we demonstrate the emergence of the hypothesized stable oscillating viscous finger

structure, maintained by the unique force equilibrium between Maxwell and viscous forces.
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Fig. S12. Results of numerical simulations of ferrofluid seal dynamics in the presence and
absence of Maxwell dipole-dipole interactions between magnet, solenoid, and ferrofluid. Snapshots
examine ferrofluid seal front evolution at optimal work point at qgs = 225 [ml min~1] with respective
parameters Y = 4.8 and |Ags| = 1. We mark the ferrofluid in dark gray and pump fluid (water) pale
blue. Column (I) shows the resulting seal front in the presence of viscous friction alone; Column (Il)
shows the resulting seal front due to viscous friction and the Maxwell forces from dipole-dipole
interaction of ferrofluid with both magnet and solenoid coil. (a) lllustration of examined configuration
and schematics of the flow system. We visualize the inner core tube diameter (red) and magnet outer
diameter (green) to clarify the coordinate mapping in the subsequent panels. (b) The emergence of
distinct viscous fingers (Saffiman-Taylor instability) at t = 0.011[sec]. (c) Snapshot of seal front at t =
0.022[sec], viscous fingers complete growth prior to seal breach. (d) Snapshot of seal front att >
0(t")[sec], seal front remaining has either achieved steady-state and will retain its form over time by
force equilibrium, Column (II), or remaining ferrofluid seal will continue to exponentially decay until
it is all washed away, Column (I).
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AT Strain Rate Estimation

We define the non-dimensional strain rate based on the experimental data Fig. 7¢ (see main

text, section 5) as,

. _ (8¢/%)
E= T/t* ’ (A49)

where t*~7'[l[,t/(:‘2kf ~ 0.113[se(] is the viscous elastic time scale.

Deformation Section tinit[sec] tenalsec] AC/e, [1] E[1]
Contraction (1 1.6 3 0.15 0.012
Bend (11D 5.1 5.7 20°/180° 0.020
Bend (v 6.7 7.6 20°/180° 0.013

TABLE. A.2. Tabulated data and calculated non-dimensional strain rate E during
obstruction course dynamic deformation.



