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Abstract 

We use magnetohydrodynamic levitation as a means to create a soft elastomeric solenoid-

driven pump. We present a theoretical framework and fabrication of a pump designed to address the 

unique challenges of soft robotics, maintaining pumping performance under deformation. Using a 

permanent magnet as a piston, and ferrofluid as a liquid seal, we model and construct a deformable 

displacement pump. The magnet is driven back and forth along the length of a flexible core tube by a 

series of solenoids made of thin conductive wire. The magnet piston is kept concentric within the tube 

by Maxwell stresses within the ferrofluid, and magnetohydrodynamic levitation, as viscous lift pressure 

is created due to its forward velocity. The centering of the magnet reduces shear stresses during pumping 

and improves efficiency. We provide a predictive model and capture the transient nonlinear dynamics 

of the magnet during operation, leading to a parametric performance curve characterizing the 

elastomeric solenoid-driven pump (denoted ESP), enabling goal-driven design. In our experimental 

validation of this model, we report a shut-off pressure of 2 − 8 [���] and run-out flow rate of 50 −

325 [�� mi���]  while subject to deformation of its own length scale, drawing a total of 0.17 

watts. This performance is the highest reported work rate for a pump that operates under its own length 

scale deformation. We then integrate the pump into an elastomeric chassis and squeeze it through a 

tortuous pathway while providing continuous fluid pressure and flow rate; the vehicle then emerges at 

the other end and propels itself swimming.  
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1. Introduction  
A large number of soft robots use fluidic elastomer actuators (FEAs) powered by pumps, e.g. 

[1–17]. These pumps, the hearts of soft robots, are typically electrically powered displacement pumps 

due to their availability, efficiency, performance curves, and control simplicity. An example of a typical 

electrically powered displacement pump is the BTC IIS (Parker-Hannifin) which is rigid and bulky. 

When used, these types of pumps necessitate centralizing them, routing the pressurized fluid via long 

channel lengths to the actuator locations, and use valving to control when they are pressurized, as 

evident in characteristic works such as Tolley et al. [18] and Aubin et al. [19].  

The use of pumps with mechanical properties more similar to FEAs would allow for the 

decentralization and distribution of displacement pumps across the volume of soft robots. The benefits 

of this approach would be numerous: (i) the number of pumps in one machine could be increased for 

faster and more forceful robots; (ii) they could be placed in closer proximity to actuators for improved 

efficiency; (iii) the number of valves could potentially be reduced for smaller form factors; (iv) most 

importantly, the beneficial compliance of soft robots would be maintained. 

In this regard, there are several promising and elegant examples of pumps made entirely of 

compliant materials for use in soft robots, such as that of Cacciucolo et al. [20], Diteesawat et al. [21]. 

Other examples [13,22–29] offer the potential for efficient, distributed fluidic actuation or analogous 

approaches to soft displacement and rotary pumps [30–44] and, while they all incorporate soft materials 

or could be envisioned as a viable pumping solution for soft robotic application; none report 

performance under deformation, limiting their practical application. Thus, there still remains an 

important need for a compliant displacement pump that offers high flow rates, � = �(10�)[�� �����], 

and pressures, � = �(10�)[��], at a system work point (i.e. system and pump curve intersection) 

compatible with human scale FEA systems, �(10�� − 10�)[�]. Further, scalable and continuous 

performance under quasi-static or dynamic deformation should also be a feature of this pump to 

facilitate technology transfer. 
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The major challenge facing the development of a deformable displacement pump is the need to 

maintain a seal under deformation. This means maintaining a separation between the high and low 

potential fluid while providing a physical gap, on the order of the local curvature, between adjacent 

interacting components (e.g., an impeller or piston, or equivalent within the housing, to avoid 

mechanical jamming). In our work, we use ferrofluids to manage this gap. Therefore, of special 

relevance to this work is research regarding ferrofluids' use as the medium in making a fluidic seal in 

either journal bearings [45–49] and other rigid applications, for example, [50–55], to name just a few. 

In addition, examination of rigid ferrofluid-based pumps, such as [56–61], exemplifies the inherent 

limitations in extending the notion of a fluidic seal to the displacing component being made entirely of 

liquid, i.e., making a liquid piston or vane; whereby relying on cohesion forces (i.e., surface tension) to 

generate appreciable pressure gradients Δ� = �(10�)[���], and as these are inversely related to gap 

width, we have to operate in gap regimes that are too narrow for utility, resulting in very low flow rates 

less than � = �(10��)[�� �����].  

This paper explores a novel approach to making soft robotic hearts, whereby the traditional 

concept of ferrofluid gap management is extended to loosely fitted magnetic cores that act as pistons 

and are centered by leveraging magnetohydrodynamic lubrication. The ferrofluid coating centers the 

core as it moves along the flexible tube and forms a seal, bridging over a specified physical gap of � =

0.25[��], selected as such to allow the magnetic core in our system to travel without jamming as the 

pump takes on a radius of curvature of its own length scale, �� ≤ 100[��]. Further, we provide the 

scaling laws for magnetohydrodynamic lubrication mechanism in such systems with respect to pressure, 

flow rate, size, and radius of curvature, thus proposing a scalable principle mechanism for future 

advances in soft-pump technology. 

While the field of hydrodynamic lubrication has been studied extensively over the years, with 

or without magnetic forces involvement, the nonlinear nature of the physics governing such systems 

caused prior efforts to avoid explicit dynamic solutions of the lubrication layer thickness evolution over 

time. Therefore, these efforts usually set the lubrication layer as constant [62,63], or consider time not 

as an independent variable but rather as an input parameter, setting eccentricity and rate of change as 
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constant [64,65]; resulting in a static problem governed by an elliptical equation. Others use planar 

configurations [63,66], focus on experimental and numerical examination [63,66,67], or a combination 

of the above.  

In this paper, we present an approximate explicit solution of the predictive model for our soft 

robotic heart that uses perturbation theory to capture the nonlinear dynamics of magnetohydrodynamic 

lubrication in a non-planar configuration. We then experimentally demonstrate that this elastomeric 

solenoid-driven pump (ESP) can maintain continuous performance under large deformation, i.e., up to 

30% in axial strain and a radius of curvature of its own length scale; as well as supply the design rules 

to correlate physical parameters to the desired deformation.  

In Fig. 1, we provide a visualization of novelty; we show the proposed ESP operating at the 

largest work point yet reported for pumps that continue to operate while deformed (for literature 

comparison details, see SI appendix A.1). Last, we provide the insight and scaling laws required to 

produce a goal-driven design of this novel pump system, tailored to soft robotics unique challenges. 

 

Fig. 1. Shut-off (max pressure no flow) Vs. Run-out (max flow now back-pressure) 

performance of comparable state-of-the-art systems. Visualization of novelty, largest work-point 

reported to date for pumps that operate under large deformations (of its own length scale). All other 

pump technologies in its performance order-of-magnitude are non-deformable pumps. 
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2. Experimental Design  
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Fig. 2. Illustration of the elastomeric solenoid-driven pump (ESP) configuration used in both  

modeling and experiments. (a) A three-dimensional model with key components and physical 

quantities. (b) Workbench setup used in the acquisition of experimental data, Inset illustrates an 

exploded view of the internal structure of an ESP with key top-level components. (c) Cross-section view 

of ESP; black frame indicates the focus of next figure, Fig. 3. (d) & (e) Cross-section view of ESP in 

operation. Snapshots of magnetic core right and left heading strokes with an indication for the state of 

the one-directional valves; red and blue fluid lines indicate high and low pressure, respectively. (f) 

Illustrative image of our designed ESP under deformation (bending) showing the loosely fitted magnetic 

core jamming upon exceeding the design-intended limit for the radius of curvature �� ≈ 100[��]; 

thus emphasizing the particular importance of a goal-driven design for rigid components in our system. 

(g) Visualization of pump potency, generating a free jet, with flow rate measured at � =

320 [�� �����].  

 

Figure 2 presents the studied configuration of an elastically compliant soft robot heart, the ESP. 

In fig. 2a, we show a three-dimensional section cut and present our system's fundamental physical 

quantities at work. By applying current to the solenoid coil, we generate a magnetic field ��⃑���� , 

attracting a rigid permanent magnetic core of field ��⃑�, and driving it at velocity ��⃑� via the dipole-

dipole interaction. This core (interchangeably denoted the magnetic piston core) is sheathed with a layer 

of ferrofluid (FerroTec EFH1), in which hydrodynamic lubrication generates viscous pressure � by the 

forward motion, centering the core and preventing contact with the walls, addressed in detail in analysis 

section 4.1.  

Fig. 2b presents the experimental workbench setup used to measure the pump performance 

curve outside a robotic system. We show the ESP connected to fluid reservoirs: one at the inlet and one 

at the outlet. The outlet tubing is fitted with a flowmeter (Renesas, FS2012-1020-NG), pressure sensor 

(Honeywell, SSCDANN030PAAA5), and a Precision Flow-Adjustment Valve (McMaster-Carr) 

providing back-pressure load. Workbench peripheral components standing in for the robotic system 

include: MCU (Arduino Uno) and Keithley 2400 DC power supply, providing the required 0.17[W] 

(1[V] and 0.17[A]). Pump assembly dimensions are  (width ×  length ×  height)= (40 × 71 ×

8) [��] and is made of silicone urethane elastomer CARBON, INC. SIL 30 with an elastic modulus 

of � = 1.8[���]. Inset illustrates the pump's internal structure, featuring seven solenoids of wire 

density �[�������  ���] = 5760 threaded over the core tube, magnet end stoppers, inlet and outlet 

joints, and four unidirectional flow valves. For more details, see SI appendix section A.2. 
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In Fig. 2c-2e, we illustrate the role of the four integrated flow valves, creating unidirectional 

flow from inlet to outlet as the magnetic core piston is cycled back and forth along the core tube. Red 

cross-marks denote which valves are at closed state, and red and blue fluid lines indicate high and low 

pressure, respectively.  

Particular attention is given to the dimensioning of rigid components within our system, i.e., 

ball bearings, solenoid coils, and the magnetic piston core. The ball bearings (used for the unidirectional 

valves) add no constraint on the system's elastic compliance, being in a loose fit of their own length 

scale (����� ≈ 3.5[��]). Conversely, the pump's ability to maintain continuous performance under 

elastic deformation is restricted by the solid magnet piston core and the number of solenoids, limiting 

bending deformation as would a vertebra. First, we set the pump's operational envelope and require 

continuous operation under deformation of its own length scale; we thus set the limit for the radius of 

curvature to be �� ≈ 100[��], see illustrated in Fig. 2f. We then select the magnetic piston core to 

match the overall scale of the pump assembly, namely a commercially available N52 Neodymium 

magnet with a diameter of �� = 2�� = 4[��] and a length � = 6.315[��]; in accordance with 

which we determine the length of the solenoid coils �� = � . Having established the piston core 

dimensions and curvature limits, we can then determine the gap required, � = 0.25[��] , and 

respectively the diameter of the enveloping tube inner wall �� = 2�� = 4.5[��]. For a detailed 

discussion on bending strain relation to geometric parameters, see Results section, see SI appendix 

section A.3. 

3. Experiment Procedure  
Using our benchmark setup, see Fig. 2b, we characterize pump performance at both deformed 

and free state. We start the system from rest with the flow regulator fully closed and initiate the MCU 

supplying  1[�] and 0.17[�] to the solenoid train. We then set the nominal solenoid relay period to 

�� ≈ 0.019[���], i.e., the activation period of a solenoid in a sequence. Based on the viscous-elastic 

characteristic time scale �∗~ ���/���� (see derivation at analysis section 4.1) we calculate the system 

achieving steady-state after a time scale of the order �∗ ≈ 0.113[���]. To assure we have achieved 

steady-state prior to collecting data, we allow the system one minutes to stabilize. We then take pressure 
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sensor readings and evaluate flow rate using both a flowmeter and by collecting the outlet spillage for 

two minutes in a 1000[��]  glass beaker, and normalize for water density at room temperature. 

Repeating this process for twenty measuring points, differentiated by incrementally increasing flow rate 

using the flow regulator, we generate the pump performance curve. Experimental data for all plots in 

this work represents one-sigma certainty acquired over seven experiments per pump, and five separate 

pumps tested.  

Fig. 2g offers a visual indication of the pump's potency, generating a free jet with a flow rate 

measured at � = 320 [�� �����]. We report continuous performance in the order of � = �(1)[���] 

and � = �(10�)[�� �����] over a range of elastic deformation up to a radius of curvature of the 

pump's length scale. For a detailed discussion of scaling laws for geometry, deformation, and 

performance, please refer to the Analysis and Results sections. 

4. Analysis 
Providing the theoretical framework for our experimental system, we present two separate 

models for two separate governing mechanisms in the system. Together these provide insight and 

predict the system's dynamic behavior. The first is the single-phase lubrication layer: we calculate the 

friction and pressure inside the fluid seal domain using lubrication theory. Integrating with the force 

balance equations, we correlate back-pressure Δ� , downstream effective flow velocity ��  and 

electromagnetic actuating force ��, see equation (1.11). The model assumes  �� = ����, where ���� 

is the effective average velocity of the magnet during operation. Furthermore, it is assumed that the 

product of �� and core tube-inner cross section gives us the pumped flow rate �[��/���] vs pressure 

Δ�[��� ]; predicting the nonlinear inverse relation of the pump's performance curve.  

The second provides the mechanism correlating the abovementioned prediction with our 

experiments, where the actual magnet velocity ���� = ��/�� is held constant fixing the solenoid relay 

time actuation ��. We are then left to reason the means by which a constant velocity-driven positive 

displacement pump provides a varying flow rate. We utilize the equation-based modeling capabilities 

of COMSOL Multiphysics 5.5 (see SI appendix section 0), and show the emergence of Taylor-Saffman 

instability, i.e., viscous fingers, with a unique stable developed pattern emerging in the presence of the 
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system's restoring magnetic force. We thus show how an effective flow rate "leak" dependent on back-

pressure Δ� is maintained past the liquid seal to enforce mass conservation.  

4.1. Lubrication Theory Modeling, Prediction of the Nonlinear 

Inverse Relation of Pressure to Flow Rate. 

We begin by formulating the predictive model characterizing the steady-state and dynamic 

performance of an ESP. It consists of a cylindrical core tube inside which a levitated magnetic core 

coated with ferrofluid. This coating provides a seal capable of maintaining its integrity as the pump 

deforms during operation and the viscous pressures required for magnetohydrodynamic levitation to 

prevent the solid-fluid piston from jamming during operation. Fig.  3a illustrates the axial cross-section 

of the proposed system. Fig. 3b, 3c illustrates the magnet axial degrees of freedom; solenoid wire is 

omitted for visual clarity. 
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Fig. 3. System Geometry including section views for visual clarity. (a) System axial cross-

section with the magnetic core axially centered. (b) Illustrating angular deviation of the magnetic core 

from a coaxial position. (c) Illustration of respective parallel deviation. For plates (b) and (c), the 

solenoid coil surrounding the core tube was omitted for visual clarity. 

 

In order to gain insight into the performance of an ESP system and the results presented here, 

we aim to model both the magnet dynamics during a stroke in the reciprocating cycle (Fig. 4a, 4b) and 

the performance curve describing the pump performance fully (Fig. 4c). Based on the effective 

downstream fluid velocity �� set to be the average magnet forward velocity ����, and knowing core 
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tube-inner cross-section, we can calculate the pumped flow rate �[�� �����]  versus pressure 

Δ�[���].  

We define vector variables using bold letters, direction vectors by hat notation, non-

dimensional variables by capital letters, characteristic values by an asterisk, and respective nth order-of-

magnitude by a superscript (�). We define the small parameter � = �/�, where � and � are magnet-

wall gap at the concentric position, and the magnet length, respectively. We limit axial eccentricity by 

the ferrofluid gap �(�)≤ �, as well as angular misalignment (�(�)�)/2 ≤ �; we set tube radial and 

axial deformation due to fluid pressure to be negligible, and finally, both tube and magnetic core do not 

rotate about their axis. We consider the one-phase flow of ferrofluid seal in the narrow gap between the 

magnetic piston and the bounding tube wall as the magnet is driven forward. We assume the ferrofluid 

to be Newtonian and incompressible, and by way of lubrication approximation [65], we formulate our 

governing equations for mass ∇ ⋅� = 0, and momentum conservation, in terms of the Stokes equation 

∇� = �∇��. We define a moving, gap curvilinear cylindrical frame ����,��,��� centered at the magnet 

center of mass; where we define the curvilinear gap coordinate � ̃to range from � =̃ 0 at the magnetic 

core surface (respective to cylindrical ��  in fig. 3a) to � =̃ ℎ  at the enveloping tube inner wall 

(respective cylindrical �� in fig. 3a). We then set our system's boundary and initial conditions: the 

magnetic core translates axially ��(� =̃ 0,�,�,�) = −
��

��
 , but does not rotate �� (� =̃ 0,�,�,�) = �� =

0, as the magnet is driven forward at ��(� =̃ 0,�,�,�) = ��; the enveloping tube (i.e. core tube) is at 

rest ��(� =̃ ℎ,�,�,�) = 0  ,  �� (� =̃ ℎ,�,�,�) = 0 , ��(� =̃ ℎ,�,�,�) = 0, and the entire system starts 

from rest   ��(�,̃�,�,� = 0) = 0  , �� (�,̃�,�,� = 0)= 0 , ��(�,̃�,�,� = 0)= 0 . Last, we limit for 

small tilt angles �(�) ≪ 1 as � ≪ �, and solve to obtain in dimensional form a special case of the 

Reynolds equation,  

 −
�ℎ(�)

��
= −

1

12�

�

��
�

��(�)

��
�ℎ(�)�

�
� +

��

2

�ℎ(�)

��
; (1.1) 

relating the ferrofluid viscous pressure field �(�)(�,�,�) with magnet radial position via gap height 

ℎ(�)(θ,�,�). Solving for viscous pressure �(�) with �(�)(�,� = �/2,�) = ������  and   �(�)(�,� =
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−�/2,�) = 0, we then provide an explicit form for pressure and axial velocity profiles as dependent on 

the movement of the magnet inside the encapsulating core tube, 

 �(�)(�,�,�) =
12 ��� �

(1 + �(�)��� �)�

��(�)

��

�

�� �
��

2��
 −

1

8
� + ������ �

�

�
 +

1

2
� , (1.2) 

 

��
(�)(�,̃�,�,�)=

1

2
�

12 ��� �

(1 + �(�)��� �)�
 
��(�)

��
� +

���

�
 ������� �

�̃� − ℎ�̃

���� �

− �� �
�̃

ℎ
− 1�, 

(1.3) 

 and the characteristic scale for pressure �∗~ ���/���  and kinematics of the ferrofluid field 

�~ �/�~ �/��~ ��
∗/�� . The observed pressure scaling implies very large pressures of the order 

�(1/��) generated by any deviation from the concentric position of the magnet �, and its temporal 

transients ��/���; Dominating the restoring mechanism and balancing the destabilizing back-pressure 

Δp acting to bring the magnet in contact with the wall, stalling the pump under coulombic friction. For 

more details, see SI appendix section A.4. 

Next, we address the force balance equations governing our system's nonlinear dynamics in 

leading order. The magnet force balance equations detail the dynamic balance of Maxwell stress terms, 

as are the result of dipole-dipole interaction between magnet and solenoid, with those from viscosity, 

gravity, and the rheology, with the latter resulting from the ferrofluid held by the magnetic field of the 

permanent magnet, 

 
��:  ��,�→ �,�

(�)
�����

�������� ������
������� �����

+ � � � �
���

(0)

���
��

��= 0

��
�/2

−�/2

2�

0
����

�����������������������
��������������� �������� �������� ����

− ����

 
�������� ������

������������
�����,   �−����

− �(��)2Δ��������
�������� ����
������ ������

= 0, 
(1.4) 

 

���:   ��,�→ �,�̃
(�)

�����
�������� ������
������� �����

+ �� � −�(�)���(�)�� ����
�/�

��/� 

��

�

� ���(�)
���������������������������

����� ������� ��������  ����
�����

+ �����(�)�����
����������

������� 
�����

− ���̃�
�������� ������

������������
�����,��̃����

+ ����������
���������
���������

�����

= 0 . 

(1.5) 

Where � and �� are the ferrofluid's effective dynamic viscosity and linear spring coefficient, 

and � is the center-of-pressure coefficient that relates the forward velocity to the destabilizing normal 

force in the � ̃direction exerted on the levitated magnetic piston, which acts as an inverted pendulum.  
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For simplicity, we formulate ��,�→ �, the force applied by the solenoid (marked by index 2) on 

the permanent magnet (marked by index 1), using Ampere's model [68–75] to formulate the magnet-

solenoid interaction. We assume the leading-order contribution is attributed to a point-like dipole-dipole 

interaction, with negligible correction resulting from mutual induction and magnet geometry (see SI 

appendix section A.4.2). We then formulate the magnetic dipole maxwell force, 

 

��,�→ ����
 

����� �� ��� �������� 
����� ��  �  ������ �� �

 

=  

−
3������,���������

�

4� ������ + �(̃�)��
�

���������������
����� ������ ��������� ⎝

⎜⎜
⎛ ���� − 4�� �(̃�)�

������ + �(̃�)��
�

�������������
�̃�

,0⏟
��

,
3 �(̃�)���� − 2�(̃�)�

������ + �(̃�)��
�

�������������
�̂ ⎠

⎟⎟
⎞

 , 

 

(1.6) 

where  �� = 4� ⋅10��[� ���] is the permeability of free space, ��[1] the relative permeability of the 

ferrofluid, ��,�[� ��]  the permanent magnet magnetic moment, �[�������  ���]   wire coiling 

density or the number of windings per unit length assuming all are a single layer winding, �[�] the 

current running through the coil, and ��[�] the length of a single solenoid coil. 

Under the above assumptions, of downstream fluid velocity ��  equals averaged magnet 

forward velocity ����; actuation periodicity can be related to dipole-dipole actuation distance as a 

function of time by the sawtooth wave function,  

 �(̃�) = ���� �1 −
�

2
+

�

�
������ ���� �

� �

��
��� ; (1.7) 

where �� is the solenoid relay period time, that is the period for the successive coil actuation, and �[1] 

the temporal coordinate strain coefficient constraining an upper limit for the magnetic force during 

actuation in the proposed simplified model (see SI appendix section A.4.2). Substituting (1.2), (1.3), 

(1.6), (1.7) into our force balance equations (1.4), (1.5); setting Δ����� = Δ� , thus require force 

equilibrium between pump and external load; last, applying scaling arguments for magnet length � =

�/�, gap coordinate � = �/̃�, time normalized by effective downstream fluid velocity �� = ���/�,  gap 

height � = ℎ/� , fluid field pressure � = �/�∗, and velocities �� = ��/�� , �� = �� /��
∗ and �� =

��/��
∗, with the measure of eccentricity � intrinsically non-dimensional thus remains unchanged. We 
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obtain a non-dimensional leading order force balance in the �-̃axis detailing the transient of magnet 

position during pumping operation, 

 

�
�∗

��
∗�

 �2�2
(��)+ 1�

�1 − �2
(��)�

5 2⁄

��(��)

���

�����������������
����� ������� ��������  ����

����� ����

+ �(��)���
����������

������� 
����� ����

− �⏟
������

������������
����� ����

+ �⏟
������−��
−��������
����� ����

= 0 , 

(1.8) 

With resulting characteristic scales for viscous-elastic time scale �∗~ ���/���� the kinematic time 

scale ��
∗~ �/�� , and two non-dimensional numbers � = (������ �����������)/

(������� ������)= ���/̃���  and � = (������������� ��������)/(������� ������) =

����/�� . Using singular asymptotic expansion, we obtain an approximate explicit solution in 

leading-order (see SI appendix section A.4.3),   

 �(��)≈

(� − �)�e
����

��
∗

�∗�����
��

∗

�∗�
− e

����
��

∗

�∗�
�

�e
����

��
∗

�∗�
+ e

����
��

∗

�∗�����
��

∗

�∗�
− �e

����
��

∗

�∗�
 . (1.9) 

Good agreement is evident in predicting the magnet position's time evolution between the 

numerical solution of (1.8) and the leading order explicit approximation (1.9), see Fig. 4a.  

The �-axis  provides us with the pressure to flow rate relation and subsequent performance 

curve for elastomeric solenoid-driven pumps, 

 

�
1

���(��)�����
�������� ������
 ������� �����

����

−
2

�1 − ��(��)���������
������� �������� 

�������� ����
����

− �⏟

 

������
������������
����� ����

 

− 2 Δ��
�������� ����
������ ������

���� 

= 0 ; 

(1.10) 

along with respective non-dimensional numbers � = (������� �����)/(������� �����) =

3������,���������
� ��/2�� ��

���  and  � = (�������� �����)/(������� �����)= ���/�����.  

The above equations (1.8)(1.10) and (1.9) give rise to three key results. The first, with viscous 

friction pressure drop governed by the axial position of the magnetic piston; by manipulating the 

viscous-elastic time scale such that �∗ ≫ �� = 2(� − 1)�� , the steady-state, i.e., maximal axial 

displacement, can be postponed for the duration of intermediate continuous operation, reducing energy 

losses to dissipation. Second, by limiting for Δp = 0, and �(�) → 0 we simulate the absence of a 
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destabilizing force. We then substitute u� = ��/̃ ∂t,  a� = ���/̃ ∂t�  , �(̃�) = �� − �(��/̃ ∂t)�  and 

� = (�� + ��)  , where �� is the mass of the magnet and �� = ��,���� + ��,������ being the 

pump internal fluid mass and setup tubing fluid mass, respectively; if we then reinstitute scaling 

arguments and solve for ��, we obtain a numerical estimate for minimal relay time ��,��� required to 

travel the distance �� from solenoid-to-solenoid, see Fig, 4b. From it an assessment for max flow rate 

possible by our system ���� = ���/��,�����(�� + �)�  can then be derived. Above this limit the 

magnet strips off the solenoid-train due to viscous shear stresses and inertia, inhibiting magnet 

acceleration. Third and most importantly, Solving (1.10) for ��, substituting �� = �/���
� and (1.9); 

then, reinstituting scaling arguments, we obtain the pump pressure evolution ��(�). Integrating over a 

single pumping duty cycle period τ� and averaging over time, we obtain the pump performance curve 

��,��,  

 

��,��

= −
��

��
 Ω(�)�
����� �����

+
2����������,��������

�

�������
���

�
1

�2� ������ ���� �
���
��

� � − �(� − 2) �
� −

1

8���

�������������������������������������������������
�������� ��������,   ������� �������� �� ���

−
���

2������
������������
���������

, 

 

(1.11) 

With the slope �(�) governing the form-function of the performance. The full form of the leading-

order solution is provided in SI appendix section A.4.3A.4.4. However, it is of particular interest to 

examine the  asymptotic limit when t∗/t�
∗ ≪ 1  for which Ω(q)~ �/

πr�
� �1 − �(���̃πr�

� − ����)/���πr�
�

�������������������
����

�

�

, where ��� is the steady state eccentric position of the 

magnetic piston, informing qualitative insights into parameters relations' to performance curve 

steepness.  
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4.2. Pump Performance Curve 

Characterizing the performance of an existing system requires knowledge of four key 

parameters �, �, ��, �. The effective linear spring coefficient �� and dynamic viscosity � are material 

properties of the ferrofluid seal; they do not change with the system and are solely governed by the 

material. Opposite to them: the �-axis coordinate strain �[1] and the center-of-pressure coefficient �[1] 

are two non-dimensional numbers that are calculated for the specific system based on the shut-off 

(maximum pressure, no flow) and run-out (maximal flow, no back-pressure); these change with the 

system limit values. Below we present theoretical and experimental results for the given benchmark 

system. The dynamic viscosity � = 0.006[�� ���] is set constant based on the carrier fluid. The �-axis 

temporal coordinate strain � ≈ 0.6797[1] was derived from (1.11), substituting the shut-off pressure 

and solving for �[1]. The effective linear spring coefficient was experimentally evaluated to be �� =

0.667[� ���], and last, the center-of-pressure coefficient � = 2255[1] as was calculated from (1.11) 

substituting  ��,�� = Δ� = 0, � = ����  and solving for �; for more details see  SI appendix section 

A.5. 

In Fig. 4a, we plot the evolution of eccentricity �(��) over solenoid cycles �� , in units of 

solenoid relay time periods, as �� = � and �� = ����. Color transition from dark to light denote an 

increase in � value and respective steady-state flow rate ���[�� �����]. We show in intervals of 

|Δ���| = 0.25 how for � ≪ 1, the value � and |���| = |�(∞)| matches; whereas transitioning from 

|���| ≈ 0.75 to |���| → 1 requires a disproportionate increase in � and respectively ���, an attribute of 

the exponential decay nature of �(��) as it approaches its limit at unity.  

In Fig. 4b, we compare theoretical approximation to experimental results for the minimal relay 

time of our experimental setup. With a total accelerated mass � = (�� + ��)≈ 0.009[��], we solve 

(1.10) for ��  as discussed in the concluding paragraph of section 4.1 and obtain a theoretical 

approximate ��,���,���� = 0.0182[���]. Good agreement is seen compared with the experimental 

minimal relay time ��,���,��� = 0.0188 ± 0.0007 [���] at pump run-out; This relay time corresponds 

to a maximal pumping duty cycle, i.e., the frequency of the magnet to completing an entire pumping 
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cycle �� = 1/�� ≈ 4.4 ± 0.16[��] , at which the maximal flow rate of ���� ≈ 320[��/���]  is 

obtained. For more details, see SI appendix A.5.  

In Fig. 4c, we focus on the pump performance curve at an unstrained state. We present the 

experimental data with (solid black) and without (solid red) the ferrofluid coating, showcasing the 

fluidic seal's merit, without which the pump is rendered useless. Further, reasoning the form of the 

performance curve, we observe how as flow rate increase from ��� ≈ 50[�� �����] (respective to � ≈

1), to ��� = ���� ≈ 320[�� �����] (respective to � ≈ 6.8), the diminishing incremental increase in 

� to unity compounded with the singularity of the curve slope �(�)∝ 1/�1 − ���
�   result in a nonlinear 

increase in curve gradient; reasoning the form of the performance curve. Good agreement is evident 

between model prediction (solid blue) and experimental results (solid black) evaluating system 

performance curve.  

Last, in Fig. 4d, we experimentally evaluate pump efficiency � = (�������� ����� �����)/

(����� �����)= ����/���� , where ��[�]  and ��[�]  are the voltage and current measured at the 

solenoid's inlet, respectively. We show current system attain a peak efficiency of η ≈ 12.5%  at q�� ≈

225[ml min��] and respective back pressure Δp ≈ 6[kPa].  
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Fig. 4. Numerical, experimental, and theoretical results of magnet dynamics and pump 

performance curve. (a) The time evolution of magnet eccentricity from an initial concentric position 

(at � = 0) for different values of � = ����/�� = ����/���� , by varying the relay time period �� . 

Presented is a quantitative comparison between the numerical solution (dashed black) of the exact 

expression (1.8) and its explicit leading-order asymptotic approximation (1.9) in solid lines. (b) 

Comparison of theoretical (pale blue) and experimental (black) minimal relay time ��,���. In pale blue, 

the solution to equation (1.10) under specified conditions for minimal relay time. The horizontal dashed 

line represents the distance between one solenoid to the next ��� − �(̃�)�/� = 6.315[��] ; the 

intersecting vertical dashed line informs magnet's minimal travel time. Solid black line indicates the 

experimental approximation of relay time based on pump run-out, ��,���,��� = 0.0188 ±

0.0007 [���]; Error is determined based on flow sensor specifications. (c) Comparison of theoretical 

(pale blue) and experimental pump performance curve at unstrained state; with (solid black) and 

without (solid red) the ferrofluid coating. Marked thresholds indicate pump run-out and shut-off. (d) 

Experimental characterization of pump efficiency defined � = (�������� ����� �����)/

(����� �����)= ����/���� , with peak efficiency of � ≈ 12.5%  reached at ��� ≈ 225[�� �����] 

(corresponding to a back-pressure �� ≈ 6[���] when intersected with Panel (c)). Error bands for 

Panels (c) and (d) indicate a 68% confidence (one standard deviation) in the mean based on seven 

experiments over five separate pumps. 

Several insights and design guidelines emerge from the good agreement between experimental 

results and the explicit approximation of equation (1.11): the characteristic scale � =

(������� �����)/(������� �����) = 3������,���������
� ��/2�� ��

���  governs design parameter 

requirements from the individual solenoid coils; such as � ≫ 1 is a sufficient condition to assure the 
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pump does not stall under the back-pressure generated by the embodied system it drives. � =

(�������� �����)/(������� �����) = ���/�����  and � = (������ �����������)/

(������� ������)= ���/̃���  indicates system susceptibility to external accelerations, and as long as 

� ≪ 1 and � ≪ 1 are maintained, any applied external accelerations to the embodied system will have 

no appreciable effect on pump performance. The Maxwell pressure ��2����������,��������
� /

�������
���� ��2� ������ ���� �

���

��
� � − �(� − 2) �

��
− 1/8����  establishes  a clear relation 

between ESP parameters informing parameters to optimize pump pressure, based upon system, 

material, and geometric restrictions. Finally, the asymptotic pump performance slope Ω(q)~ q/

πr�
� �1 − �(a��mπr�

� − γCμq)/Cκ�πr�
� �

�
, qualitatively indicates parameters' relation to curve 

steepness. To conclude, we thus offer a complete set of guidelines for the design of ESPs using goal-

oriented principles. 

4.3. Stable Patterns of Taylor-Saffman Instabilities Under 

Restoring Magnetic Force 

Next, we analyze the second mechanism governing our system; correlating the abovementioned 

prediction with our experiments. In our experimental system, magnet velocity ���� = ��/�� is held 

constant, dictated by the constant relay frequency �� = 1/��; thus the overall flow rate flow would 

supposedly be maintained at ���� = ���� = �������
� . However, flow rate �[�� �����]  decay 

inversely with back-pressure Δ�, as predicted by (1.11). We now turn to investigate and reason the 

means by which a constant velocity-driven positive displacement pump provides a varying flow rate �.  

Utilizing the equation-based modeling capabilities of COMSOL Multiphysics 5.5, we investigate the 

2D flow within a Hele-Shaw cell with a variable height (for more details, see SI section A.6). Based on 

previous work [76–78], we investigate the emergence of Saffman–Taylor instability, i.e., viscous 

fingers, along the magnet length. In figure 5, we present a system illustration examining the transient 

evolution of the ferrofluid seal front from both a 2D top view and 3D projection. Snapshots show the 
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system at optimal work point at ��� ≈ 225 [�� �����] respective to � = 4.8  and |���| → 1; ferrofluid 

is denoted in dark gray, pumped fluid in pale blue. In panel (�) we show the emergence of distinct 

viscous finger structures, the Saffman-Taylor instability; panel (�), viscous fingers complete growth 

prior to seal breach. Last, in panel (d), we show a stable oscillating viscous finger pattern; starting at 

� > �(�∗)[���] . The pattern oscillates respective to solenoid train actuation frequency and is 

maintained over time by force equilibrium between viscous and Maxwell force resultant.  

Through this approximate constant cross-section breach in ferrofluid seal – pale blue extension 

reaching from � = 0 to � = �, the ESP can maintain continuous operation under varying back-pressure 

without stalling.  

 

 

Fig. 5. Numerical simulation results for ferrofluid seal dynamics. Presented snapshots 

examine ferrofluid seal front evolution for the system at optimal work point, ��� ≈ 225 [�� �����] 

with respective parameters � = 4.8  and |���| → 1. Ferrofluid is denoted by dark gray, pumped fluid 

in pale blue. (a) Examined configuration illustration showing dimensional notation. The inner core tube 

diameter (red) and magnet outer diameter (green) are visualized to clarify the coordinate mapping in 

the subsequent panels. (b)  The emergence of distinct viscous fingers (Saffman-Taylor instability) at 

� ≈ 0.011[���]. (c) Snapshot of seal front at � ≈ 0.022[���], viscous fingers complete growth prior to 

seal breach. (d) The seal front is kept in stable oscillations past  � > �(�∗)[���] by force equilibrium 

between viscous and Maxwell force resultants'. For the FEM model used in plates (a) through (d), see 

SI appendix section A.6. 
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5. Results 
We now turn to demonstrate how the above model predictions and insights emerge in an 

experimental setup. In Fig. 6, we show the performance curve for an ESP system (constructed within 

the limitations of our manufacturing capabilities) evolving as we progress strain conditions. In Fig. 6a. 

and 6b, we present the steady-state performance curves under strained conditions for bending and 

stretching, respectively (see SI appendix section A.2). It is of particular interest to examine the 

geometric-mechanical jamming for pump bending deformation. We develop a simplified geometric 

model to determine the bounding limit for the pump bending strain in relation to geometric parameters 

or vice versa. Based on our experimental system design, we estimate that mechanical jamming will 

occur at a bending angle ���� ≤ 2 arctan(2��/(�/2) ) ≈ 21.5[���], where �� is the effective magnet 

gap at concentric position accounting for magnet rounded corners; for more details, see SI appendix 

section A.2. We did not find an equivalent mechanical jamming model for tensile strain since failure 

modes beyond 30% resulted from delamination at the seams, resulting from manufacturing 

inconsistencies.  In Fig. 6a, we see as the pump reaches a bending angle � ≈ 20[���], its performance 

approaches the point where the run-out and shut-off points intersect where it would seize.   
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Fig. 6. Experimental performance curves of ESP under varying strain conditions. Error 

bands indicate a 68% confidence (one standard deviation) in the mean based on seven experiments 

over five separate pumps; plot markers represent the experimental mean value. (a) Experimental pump 

performance curve at unstrained � = 0[���] and strained states � = 10,20[���]. (b) Experimental 

pump performance curve at free state Δℓ/ℓ� = 0 = 0[%] and axially stretched Δℓ/ℓ� = 0.15,0.3 =

15,30[%]. 

In Fig. 7, we present a conceptual vision for functionality. Our design implements an ESP as 

an apparatus incorporated into a same-scale compliant boat that is forced through an obstruction course 

that includes 15% lateral contraction and 20-degree bends. The boat then emerges at the other end of 

the course and propels itself forward via the jet generated by the ESP (similarly to the free jet visualized 

in Fig. 2f). 

 We quantify the non-dimensional strain rate to be �̇ = (�ℓ/ℓ�)/(��/�∗)=  �(10��)[1], and 

normalize based on the viscous elastic time scale. We thus relate the strain rate to the governing 

mechanisms discussed above and in the Analysis section 4; allowing us to expand the conclusions 

regarding performance, mechanical jamming, and hysteresis beyond the proposed scale of this study. 

Data used to evaluate strain rate �̇ , is available at SI appendix section A.7 Table A.2. 

Initially, we push the embodiment through the obstruction course using the semi-rigid outlet 

tube as a flexible pushrod with both inlet and outlet tubes connected. During deployment stages 

7�(�)→ 7�(��) we continuously log both pressure and flow rate. In Fig. 7a, we illustrate the 

experimental setup; inset illustrates a focused top view of the embodiment structure with top-level 

components. Fig. 7b shows the deployment stage (left panel): (�) starting point at rest, (��) squeezing 

through a 15% lateral contraction, (���) 20-degree positive bend, (��) 20-degree negative bend. During 

(��)→ (���), (���)→ (��) and past (��), system reverts to an unstrained state. Next, we present the 

start and end positions of the self-propulsion stage (right panel), where the system completes a 

swimming task, using a free jet for propulsion (as visualized in Fig. 2g and Movie S1). In Fig. 7c, we 

present the real-time performance of the ESP during dynamic deformation. The non-hysteretic nature 

of the ESP is evident upon returning to the unstrained state in sections (��)→ (���), and past (��); the 

pressure difference past section (��) corresponds to change in elevation Δ� = ��ℎ = 1000 ⋅9.81 ⋅

0.10 ≈ 1[���]. A real-time video of the system navigating the course is available; see Movie S5, S6. 



MAGNETOHYDRODYNAMIC LEVITATION 23 
 

Last, we offer an avenue for using the ESP apparatus as a self-sensor to estimate its strained 

state defined as � = ����/���� = ����/���� ≤ 1  and provide a warning mechanism prior to 

mechanical jamming. Correcting for back-pressure from the external load, we can plot the dynamic 

work-point, i.e. pressure and flow rate at a point in time, and overlay on Fig. 6a; we can then estimate 

the equivalent bending ���� and calculate the strained state ratio �, where � = 1 indicates the system 

jamming limit. In Fig. 7c, boxed region A (� ≈ 180[�� �����] ,� ≈ 3.1[���]) has an equivalent 

strain ���� ≈ 10[���]  respective to a strained state of � = 0.46 ; whereas regions B ( � ≈

40[�� �����] ,� ≈ 1.4[���] ) and C  ( � ≈ 23[�� �����] ,� ≈ 1.4[���] ) correspond with the 

equivalent strain ���� ≈ 20[���]  for a strained state of � = 0.93, informing proximity to pump 

stalling. 
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Fig. 7. Experimental setup demonstrating an ESP integrally embodied in a soft robotic 

apparatus. The embedded ESP endures axial and angular strain while providing continuous fluid 

pressure and flow rate before eventually emerging at the far end. It then completes a swimming task 

using free jet propulsion (See jet visualization, Movie S1). (a) Experimental setup, inset illustrates a 

focused top view of the embodiment structure with key top-level components. (b) Deployment stage (left) 

- Snapshot sequence of embodiment at various stages during deployment: (I) starting point at rest, (II) 

lateral deformation squeezing through a 15% contraction, (III) 20-degree positive bend, (IV) 20-degree 

negative bend, during (II)→(III), (III)→(IV) and past (IV) system reverts to an unstrained state. Self-

propulsion stage (right) – start and end positions of self-propulsion post-deployment. (c) Continuous 

dynamic performance plotted in real-time during deformation with evaluated non-dimensional strain 

rate �̇ = (�ℓ/ℓ�)/(��/�∗) =  �(10��)[1]. Boxed regions A,B and C are regions of interest where we 

use the ESP for self-sensing to estimate its strained state φ = ε���/ε��� = ϕ���/ϕ��� ≤ 1; thus 

providing a warning method prior to mechanical jamming, which occurs at φ = 1. Boxed region A 

(q ≈ 180[ml min��] ,p ≈ 3.1[kPa]) has an equivalent strain of φ = 0.46; whereas regions B (q ≈

40[ml min��] ,p ≈ 1.4[kPa]) and C  (q ≈ 23[ml min��] ,p ≈ 1.4[kPa]) correspond to a strained 

state of φ = 0.93. 

6. Concluding Remarks 
In this work, we tackle the leading component standing in the way of soft robotic systems from 

functioning under deformation - the pump. We present a simple, focused experimental demonstration 

and a theoretical framework, showing for the first time an elastomeric solenoid-driven pump (denoted 

ESP) undergoing deformations of its own length scale �(10��)[�]  while generating pressures and 

flow rates in the order of �(10�)[��]  and �(10�)[�� �����]  for a power consumption of 

�(10��)[�]. The resulting work-point is the largest reported for pumps that operate under large 

deformations (of its own length scale) with no appreciable hysteresis. 

We observe two governing physical mechanisms in these systems: magnetohydrodynamic 

levitation and the Saffman-Taylor instability in the presence of a restoring magnetic force. In addition, 

we report the characteristic scales and an explicit leading-order predictive model detailing how the 

proposed governing mechanism of magnetohydrodynamic lubrication is scalable with respect to 

pressure, flow rate, size, and radius of curvature. 

Last, we elucidate a list of avenues for tailoring performance in goal-oriented design: We show 

how the restoring force centering the magnetic piston and the maximal pressure generated by the pump 

are inversely proportional to the magnet-wall gap squared; evident by the characteristic pressure scale 

�∗ ∝ 1/��. We relate ferrofluid's effective dynamic viscosity � and linear spring coefficient ��  to the 
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destabilizing force acting on the magnetic piston; whereby in making � ∝ �/�� ≪ 1 we reduce steady-

state eccentricity |���| and with it viscous friction -  the leading order source of dissipative energy loss. 

We point to a criterion over the non-dimensional numbers � and �, the inertial to viscous force ratios, 

such that when � ≪ 1 and � ≪ 1, external accelerations exerted on the pump will have no appreciable 

effect on performance. We provide minimal criteria sufficient to assure the pump does not stall under 

the back-pressure, so long that the non-dimensional number �, the Maxwell to viscous force ratio, � ≫

1. We show the ESP apparatus as a sensor to estimate its own strained state, defined � = ����/���� ≤

1, and provide a warning mechanism prior to mechanical jamming due to excessive deformation. Last, 

we inform how by manipulating the viscous-elastic time scale to be greater than the pumping duty cycle 

�∗ ≫ ��We can delay the magnetic piston from stabilizing at steady-state maximal eccentricity during 

operation, further reducing energy loss and dissipation. 

Combined, these provide an explicit set of scaling laws - a toolbox to assist in goal-oriented 

design; a first step towards developing a practical deformable pump that will serve as the foundation 

for future advances in soft-pump technology. 
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Appendix A 

A.1. Table 1 - Comparison of Systems from Different 

Technologies and Scales. 

 

 
TABLE. A.1. Characterization of performance for comparable state-of-the-art pumping 

solutions1, used in figure 1. 

 

1 Data presented herein is based on information reported or derived implicitly via images and figures when no 
such information was provided explicitly. Accordingly, some data may vary by a factor. However, great care 
was taken to ensure that the critical parameters associated with a given system are identified to properly position 
it in the correct scale. 
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A.2. Experimental System Design and Setup. 

A.2.1. Fabrication Process of the ESP. 

The proprietary urethane methacrylate resin was a proprietary formulation (UMA 90, Carbon 

3D, Inc.) 3D-printed on a Carbon 3D M1 printer. UMA 90 was used to fabricate coil guides. We then 

wind a copper wire (diameter: 250 [��]) at a winding density of � = 5760 [�����/�]. In order to 

control the magnet piston, seven coils sheath the center tube of the ESP. A cylindrical neodymium 

magnet (N52, length: 6.315 [��] , diameter: 4 [��] ) is inserted into a center tube (diameter: 

4.5 [��] , length: 50 [��]). Sealing the gap (250 [��]) between the core center tube and the 

neodymium magnet, we use FerroTec, EFH1 ferrofluid to coat the magnet, creating a liquid seal. Due 

to the magnetic field from the permanent magnet, i.e., the magnetic piston core, ferrofluid is 

automatically localizing around and is transported with the piston core during pumping operation.  

The silicone-urethane resin was a proprietary formulation (SIL 30, Carbon 3D, Inc.) 3D-printed 

on a Carbon 3D M1 printer. Three parts of the ESP pump were 3D-printed (the top, bottom, and center 

tube). The 3D-printed parts were thermally cured in the oven (8 [ℎ�] at 120 [°�]). Four stainless steel 

balls (diameter: ≈ 3.5[��]) were placed at the one-way ball valve area (see main text, section 2, Fig. 

2c). The same SIL 30 was used to glue the top and bottom ESP parts. SIL 30 is placed at the bottom 

part and covered by the top part; we then put it in the oven for gluing (8 [ℎ�] at 120 [°�]). The center 

tube is then glued at the center of the ESP part by using SIL 30 and thermally cured in the oven again. 

A.2.2. ESP Performance Measurement. 

To measure the ESP performance, a regulator, flowmeter (Renesas, FS2012-1020-NG), and 

pressure sensor (Honeywell Sensing and Productivity Solutions, SSCDANN030PAAA5) are required. 

Fig. 2b (see main text, section 2) shows the connection between these three components. The flowmeter 

and regulator are connected in serial after the pump outlet. A Y-connector is used between the pump 

outlet and the flowmeter to connect the pressure sensor. In order to control the regulator based on the 

setup, we measured the flow rate and pressure in real-time. In order to measure the performance of ESP, 
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we measured pressure and flow rate from the fully closed state of the regulator to the fully open state 

by gradually opening the regulator. Based on the viscous-elastic characteristic time scale �∗~ ���/���� 

(see derivation section A.4.3) we calculate the system achieving steady-state after a time scale of the 

order �∗ ≈ 0.113[���]. To assure we have achieved steady-state prior to collecting data, we allow the 

system one minute to stabilize. We take pressure sensor readings and evaluate flow rate using both a 

flowmeter and by collecting the outlet spillage for two minutes in a 1000[��] glass beaker; then 

normalize for water density at room temperature. 

A.2.3. Performance Curve Characterization Under Strained Conditions. 

We 3D printed a bending jig and a tensile strain stage to measure the ESP performance under 

deformation (bending, tensile strain). In Fig. S1a, we present schematics and definition of the bending 

angle �[���] and radius of curvature ��[�]. In Fig. S1b, we show the ESP attached to the bending 

Jigs, each with a fixed radius of curvature �� → ∞ (����), ��  =  200 [��], and ��  = 100 [��]. 

The bend radius of curvature ��  =  200 [��] and ��  = 100 [��] corresponds to � = 10[���] 

and � = 20[���] bending angle, respectively. The bent ESP performance was measured using the 

same setup and method as detailed in section A.2.2. 

To test the ESP performance under tensile strain (i.e., stretching), we mounted the 3D printed 

stretching stage on a linear stage. ESPs were attached to the stretching stage and stretched while the 

linear stage was operating, as shown in Fig. S2. We stretched the ESP up to 30% (Δℓ/ℓ� = 0.3), and 

the performance was measured for every 10% increase in tensile strain, see Fig. S2b. 

 

Fig. S1. Experimental setup for ESP performance curve characterization, bending strain. (a) 

Schematic illustration of measuring the radius of curvature �� and bending angle �. (b) Photos of the 

ESP bent on the bending stage with different curvatures. 
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Fig. S2. Experimental setup for ESP performance curve characterization, tensile strain. (a) 

schematic illustration of measuring the tensile strain (� ). (b) Photos of the ESP stretched on the 

stretching stage with different tensile strains. 

A.3. Geometrical Model for Characterizing Geometrical 

Jamming Under Bending. 

This section presents a simplified geometric model to determine the bounding limit for pump 

bending strain in relation to geometric parameters, see figure S3. We assume mechanical jamming 

occurs when the magnet exhausts its radial travel and is now pressed against the inner wall of the core 

tube (in light brown); resulting in columbic friction then bringing it to a halt upon contact. We do not 

consider the driving maxwell force's ability to overcome coulombic friction, driving the magnetic core 

past the point of mechanical contact. Figure S3a presents an illustrative view of our experimental 

observation, where at leading-order, the solenoid coil assemblies acting as vertebrae govern the core 

tube curvature. Therefore, we propose a simplified deformed state form-function using a discrete two 

rigid link model, see Fig. S3b.  
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Figure. S3. Geometrical Model for characterization of geometrical jamming under bending. 

(a) Illustrative view of our experimental observation, where the solenoid coil assemblies are acting as 

vertebrae govern the core tube curvature. (b) A simplified discrete two-link model for the deformed 

state form-function under bending illustrated at mechanical jamming. 

Based on this simplified geometric model, we formulate our geometric mechanical jamming 

condition, 

 ���� ≤ 2 arctan�
2��

�/2
 � ≈ 21.5[���] , (A.1) 

where �� = � + ��,������ = 0.25[��] + 0.05[��] = 0.3[��] is the effective increase to magnet-

wall gap at the concentric position. Doing so, we take into account the magnet's reduced effective radius 

(thus increase in the gap) due to its filleted corners of radius ��,������. Having formulated the two-link 

bending angle ����, we can now formulate the geometric relation for the pump's radius of curvature at 

jamming,  

 ��,��� =
��

2
sin �

�

2
� +

��

2 cos �
�
2�

tan(�)
− (2� + ��)≈ 94[��] (A.1) 
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Where �� = 0.072[�] is the total pump length.  

A.4. Lubrication model, Fluid Field Pressure, and Velocity 

Profile Solutions. 

We formulate a predictive model characterizing the steady-state and dynamic performance of 

an ESP; It consists of a cylindrical elastomeric core tube inside which viscous pressure and maxwell 

forces levitate a magnetic core coated with ferrofluid. The ferrofluid coating provides a seal that 

maintains its integrity as the pump deforms during operation. In addition, the viscous pressure generated 

within its fluidic field, resulting from the forward motion of the magnet, maintains the underlying 

magnetohydrodynamic levitation, preventing the solid core from coming in contact with the wall and 

jamming.  Fig.  S4 illustrates the modeled geometry. Panel (�) illustrate the axial cross-section of the 

proposed system. Panels (�) and (�) illustrate the magnet axial degrees of freedom; panel (�) shows 

system geometry definitions used in the cylindrical-to-gap curvilinear coordinate mapping. Last, panel 

(e) presents a qualitative illustration of the ferrofluid flow field surrounding the magnet due to the 

superimposed pressure-driven (Hagen-Poiseuille), and shear-driven (Couette) flows. The external coil 

surrounding the core tube was omitted for visual clarity in panels (�)− (�). 
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Figure. S4. System schematic Geometry and section views for visual clarity. (a) System axial 

cross-section with the magnetic core axially centered. (b) Illustrating angular deviation of the magnetic 

core from a coaxial position. (c) Illustration of respective parallel deviation. For plates (b) and (c), the 

Solenoid coil surrounding the core tube was omitted for visual clarity. (d) illustration of system 

geometric definitions used in the Magnetic piston-to-gap curvilinear coordinate mapping. (e) 

Qualitative illustration of ferrofluid flow field surrounding magnet due to superimposed pressure-

driven (Hagen-Poiseuille) and shear-driven (Couette) flows. The external coil surrounding the tube in 

panels (b)-(e) were omitted for visual clarity. 

We define vector variables using bold letters, direction vectors by hat notation, non-dimensional 

variables by capital letters, characteristic values by an asterisk, and superscript (�) denoting the nth 

order of magnitude. We define a curvilinear frame (���,���,���) following the curvature of the encasing 

core tube (inner radius ��[�] and external radius ���[�]), where ���, it the direction tangent to the core 

tube axis, and ��� the bi-normal parallel to the horizon. We define a moving, gap-curvilinear cylindrical 

frame ����,��,��� centered at the magnet center of mass; the magnet has a radius ��[�], a length �[�] and 

a mass �[��]. We assign the gap height coordinate � =̃ � − ��  ranging from [0,ℎ(�,�,�)], where 

�[�] is the radius from the cylindrical moving frame (panel (e) segment ������) and ℎ(�,�,�)[�] is gap 

height (panel (e) segment ������). We define the deviation of the magnet axis from the tube axis by 



MAGNETOHYDRODYNAMIC LEVITATION 10 
 

�(�,�)[1] = �||(�)− �/(�/2)tan��(�)� , Where �||(�)[1] is the ratio of the parallel shift to the ideal 

gap width �[�], and the second term stands for the �� axis dependence of the gap as resulting from the 

tilting of the magnet by angle �(�)[���] as a function of time. We define Δ�����[��] as the pressure 

drop across the magnet along the �� axis from end to end. The magnet is traveling at a velocity �� =

��/��  where ��[�] is the distance between the centers of the magnetic moment of the permanent 

magnet ��[�/�] and solenoid coil ��[�/�], and �� = 1/�� is the duty cycle period for the successive 

coil actuation at frequency ��[��]. Each coil is characterized by: the number of turns per unit meter 

�[1/�]  assuming a single layer winding, the permeability of free space ��[�/��] , the relative 

permeability ��[1] in the effective volume where the magnetic field is in effect, and the current flowing 

through it �[�]. External forces acting on the magnet include the dipole-dipole interaction ��,�→ �[�], 

gravity's acceleration � = (��,0,��)[�/��], and the rheological influences of the ferrofluid due to 

viscous friction formulated by dynamic viscosity �[�� ⋅�] and the distributed magnetic volume force 

modeled using a linear spring model and coefficient ��[�/�].  

In Fig. S4d, we determine the magnet-wall gap ℎ(�,�,�); we define the gap using a moving 

coordinate system translating with the inside cylinder, i.e., the magnetic piston core, 

 

ℎ(�,�,�) = �� − �� =
��� ������� �� 

��� ���������� ����������
= ������ = ������ − ������ 

= ���� cos � + ����(1 + �)�
�

− (����)� + (���� cos �)� − �� , 

(A.2) 

where � = �/�~ �/��  ≪ 1 our system's small parameter, with �[�] and �[�] standing for magnet-

wall gap at the concentric position, and the magnet length respectively. We limit axial eccentricity by 

the magnet-wall gap for both parallel �(�) ≤ �, and angular misalignment (�(�)�)/2 ≤ �; core tube 

radial and axial dimensions do not deform due to fluid pressure, and both tube and magnetic piston core 

do not rotate. 

In the narrow gap between the magnetic piston and the bounding tube wall, we consider the 

internal flow of ferrofluid to be one-phase, Newtonian, and incompressible as the magnet is driven 

forward. Next, we set our normalized variables and coordinates, 
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�� =
��[�/���]

��
 , �� =

�� [�/���]

��
∗  , �� =

��[�\���]

��
∗  ,   

� =
�

�
 , � =

�̃

�
~

�̃

��
 , �� =

�

��
∗ =

�� �

�
  ,    � =

�

��
∗ 

� =
ℎ

�
~

ℎ

��
  , � =

�

�∗
   ,    ������ =

������

�∗
  . 

 

(A.3) 

We note that the angular coordinate � and the magnet eccentricity �(�,�) are intrinsically non-

dimensional and require no additional normalization. 

The fluid motion within the gap is governed by the momentum and mass equations under the 

lubrication approximation,  

 
��:  

��(�)

��
= 0  , Θ�:  

��(�)

�Θ
= 0  , ��:  0 = −

��(�)

��
+

����
(�)

���
  , 

���  
���

(�)

��
+

���
(�)

��
= 0 , 

(A.4) 

with emergent characteristic scales for pressure �∗~ ���/���  and ferrofluid kinematics �~ �/�~ �/

��~ ��
∗/��  from order-of-magnitude analysis. Next, we Set our system's boundary and initial 

conditions. In dimensional form, these are: the magnetic core translates axially ��(� =̃ 0,�,�,�) =

−
��

��
 , but does not rotate �� (� =̃ 0,�,�,�) = �� = 0 , as the magnet is driven forward at 

��(� =̃ 0,�,�,�) = �� ; the enveloping tube (i.e., core tube) is at rest ��(� =̃ ℎ,�,�,�) = 0 ,  

�� (� =̃ ℎ,�,�,�) = 0 , ��(� =̃ ℎ,�,�,�) = 0, and the entire system starts from rest  ��(�,̃�,�,� =

0)= 0  , �� (�,̃�,�,� = 0) = 0 , ��(�,̃�,�,� = 0)= 0. With these defined, we then substitute scaling 

arguments and begin by solving  the �� -axis equation to gain the axial velocity profile inside the 

ferrofluid gap in non-dimensional form, 

 
��

(�)
=

1

2

��(�)

��
(� � − ��)

�������������
����������������

����

−
�

�
+ 1

�����
������� ����

. 
(A.5) 

Substituting (A.5) into the continuity equation from (A.4) and solving for the gap radial 

direction, we obtain,  



MAGNETOHYDRODYNAMIC LEVITATION 12 
 

 
��

(�)
= −

1

12

���(�)

���
( 2� � − 3��� + ��)+

1

4

��(�)

��

��

��
(�� − ��)

+
1

2

��

��
�1 −

��

��� . 

(A.6) 

Implementing the magnetic core axial translation boundary condition, 

 
��(� = 0,Θ,�,��)= −

��

���
  , ��

∗ = ��� 

 

(A.7) 

We attain a special form of the Reynolds equation from general lubrication theory, 

 
−

��

���
= −

1

12

���(�)

���
( ��)−

1

4

��(�)

��

��

��
(��)

�������������������������

�
�

��
�

��
�

��(�)

��
(� �)�

+
1

2

��

��
 , 

(A.8) 

where in leading order, 

 

�(�) = �(�,��)cos Θ + 1 + O(��) 

�(�,�)[1] = �||(�)[1]�����
������ ��� �� 

��������
�����

−
�[�]

�/2[�]
tan��(�)�

�����������
������ ��� 

�� ����  

 . (A.9) 

Substituting we write, 

 �(�) = 1 +

⎝

⎜
⎜
⎛

�||(��)[1]�������
������ ��� �� 

��������
�����

− 2� tan��(��)����������
������ ��� 

�� ���� 
⎠

⎟
⎟
⎞

cos Θ , (A.10) 

limiting for the case of small tilt angles �(�) ≪ 1 as � ≪ �, 

 

�(�)(Θ,��)= 1 + �||(��)���
������ ��� �� 

��������
�����

cos Θ . 

(A.11) 

Substituting, and integrating twice over �, as �(�) ≠ �(�)(�) as the change due to tilt was 

rendered negligible, 

 �(�)(Θ,�,��)=
12 cos Θ

�1 + �||(��)cos Θ�
�

��||(��)

���
�

��

2
 −

1

8
� + Δ����� �� +

1

2
� . (A.12) 

Substituting (A.12) back to (A.5), we obtain the ��-axis velocity component in non-dimensional 

form, 
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��
(�)

(�,Θ,�,��)

=
1

2
�

12 cos Θ

�1 + �||(�)cos Θ�
�

��||(�)

���
� + Δ������ �� � − �(�)��

���������������������������������������
����������������

����

−
�

�(�)
+ 1

�������
������� ����

. (A.13) 

Observing the above pressure (A.12) profile, two key insights crucial to understanding the 

underlying physics of ESP systems become evident. First, we point to the pressure scaling in our system 

�∗~ ���/���, from which it is evident that we are to expect very large pressure gradients of the order 

�(1/��) respective to wall-magnet gap. Second, we note the nonlinearity related to the product of 

eccentric �||(�) and its transient ��||(�)/���, as evident by the pressure equation (A.13); specifically, 

its circumferential asymmetric distribution, where high pressures concentrate where the magnetic core 

nears the wall. Figure S5a shows the circumferential uniform pressure in the case of a concentric 

magnetic core, whereas Fig. S5b and S5c show the development of the asymmetry in the pressure profile 

as it translates from a concentric position. 

With these insights combined, it becomes evident that any deviation from the concentric 

position will generate a non-proportional increase in pressure of the order of �(1/��) focused at the 

narrowing gap; resulting in a lift force to restore the magnetic core to concentric position. This self-

correcting mechanism of Magnetohydrodynamic levitation (magneto, as Maxwell forces are employed 

to drive the magnetic piston), constitutes the underlying physics responsible for offsetting the 

destabilizing effect of the back-pressure ��  the magnetic piston, acting as an inverted pendulum. 

Absent of this mechanism, any back-pressure acting on the pump will bring the magnetic piston to 

contact the wall; the resulting contact then introduces coulomb friction, leading to increased energy 

losses to dissipation and subsequent reduction in efficiency and performance, and may eventually lead 

to stalling the pump entirely. 

Above, we discuss the importance of the circumferential pressure gradient in generating force 

equilibrium and stopping the magnet core from coming into contact with the wall. Next, we examine 

the importance of eccentricity on pump performance. To do so, we examine the axial velocity profiles 

(A.13), specifically, the balance between the pressure-driven Hagen-Poiseuille flow term and the 

shearing Couette flow. This balance, required to uphold mass conservation, governs the emergence of 
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the necessary secondary backflow near the wall when the magnet-wall gap narrows, generating steep 

near-wall velocity gradients, as is evident in figure S6(a-c). Considering energy dissipation is 

proportional to the spatial velocity gradient near the wall Δ����� ∝ �ℎ��� ������ ∝ (���/��)|���; 

ideally, we would want to optimize the lift pressure in our system based on pressure scale parameters 

respective to our system's characteristic back-pressure. Doing so ensures our system will maintain a 

position as close as possible to concentric, reducing viscous friction to a minimum and optimizing 

performance. 

 
 

Fig. S5. Snapshot view of ferrofluid internal pressure field �(�) as the ferrofluid plug is 

transported with the permanent magnetic core for the case of ������ = � .  (a) for λ = 0,

∂λ||/ ∂Tν = 0. (b) for λ = 0.01, ∂λ||/ ∂Tν = 0.5. (c) for λ = 0.2, ∂λ||/ ∂Tν = 0.5. The color gradient of 

solid lines indicates respective values of � = 0,�/3,2�/3,� respectively. 

 
 

 
 

Fig. S6. Snapshot views in time of ferrofluid axial velocity ��
(�)

as ferrofluid plug is being 

transported with the permanent magnetic core for the case of ������ = � . (a) for λ = 0,

∂λ||/ ∂T� = 0 . (b) for λ = 0.01,∂λ||/ ∂T� = 0.5 . (c) for λ = 0.2, ∂λ||/ ∂T� = 0.5 . Column I-IV 
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correspond to the local profile at angle θ = 0,π/3,2π/3,π respectively. The transition from blue to 

red indicates the local velocity profile along Z = −1/2,−1/4,0.1/4,1/2, respectively. 

A.4.1. Viscous Pressure Forces. 

This section focuses on calculating the system's resistance to the magnetic core forward travel. 

Resistance to this motion comes from both pressure drag (hydrostatic terms), and friction drag (the 

stress tensor's deviatoric terms). From the pressure field �(�)(θ,�,�) perspective, we address friction 

drag. We have a core of length �[�] that moves inside a tube, with fluid filling the gap between the 

magnetic core and the wall, 

 ��
(�)

= �

⎝

⎜
⎜
⎜
⎛

� � �
���

(�)

��̃���
�������

��

��̃������������
����� ������
�� ��� ����

��
�/�

��/�

⎠

⎟
⎟
⎟
⎞

��

�

���� . (A.14) 

From a force balance perspective, we address the pressure drag. We have a pressure gradient 

between the back and front of the piston, resulting from the external load as the magnetic piston core 

separates high and low potential fluid,  

 ��
(�)

= −�(��)�Δ�, (A.15) 

with Δ� the external load back-pressure imposed on the pump relative to the inlet reservoir.  

Last, we have the pressure force in the radial direction, mentioned in the closing argument of 

section A.4 and visualized in Fig. S5; this is the viscous pressure resulting from the 

magnetohydrodynamic lubrication acting as a restoring force centering the core,  

 
��̃

(�)
= �� � −�(�)���(�)�� ����

�/�

��/� 

��

�

� ���(�)
���������������������������

����� ��������  ����
�����

 . 
(A.16) 

A.4.2. Magnet-Solenoid Leading-Order Model for Dipole-Dipole 

Interaction. 

This section addresses the magnetic force, i.e., Maxwell force, resulting from the dipole-dipole 

interaction of the magnetic piston core (i.e., permanent magnet) and the solenoid coils. We assume both 

magnetization effects (mutual induction) and the finite volume effects (the deviation of magnet 
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geometry from spherical magnet uniformly magnetized) are negligible compared to the leading order 

approximation of a point like dipole-dipole interaction. Limiting the case of � ≪ 1  such that the 

magnetic core remains parallel to the �̂-axis during its travel in the core tube, we propose Ampere's 

model [68–75], and formulate the magnetic dipole maxwell force, 

 

��,�→ ����
�� ��� ����� ��  

�������� ����� �
������ �� �

 

= +
3����|��||��|

4�|��|�
����(�� � ⋅�� �)+ �� �����⋅�� ��

+ �� �����⋅�� �� − 5�������⋅�� ������⋅�� ��� , 

(A.17) 

where  �� = 4� ⋅10��[� ���]  is the permeability of free space, ��[1]  the characteristic relative 

permeability of the volume domain where the dipole-dipole interaction takes place (mostly the pumped 

fluid, which is water), �� = �0,0,��,��[� ��] is the permanent magnet magnetic moment, �� =

�0,0, ��������
��������

��,�

� [� ��]  the respective magnetic moment of a solenoid coil, for which 

�[�������  ���]  is the wire coiling density or the number of windings per unit length assuming all 

are a single layer winding, �[�] is the current running through the coil, and ��[�] the length of a 

single solenoid coil; last we define �� = (��,0,�(̃�)) as the distance radius between the magnetic 

moment centers. 

In calculating the distance between the centers of magnetic moment, we need to isolate our 

position in time within a duty cycle of solenoid train actuation. To do so, we correlate between the time 

and distance during a cycle,  

 
�(̃�) = �������

��

(1 − �) , 
(A.18) 

whereby the nature of our actuation cycle: the magnet begins at �(̃�) = �� , we then turn "on" the 

forward-positioned solenoid; the magnet travels at an approximated average velocity of �� = ��/�� 

until it reaches the activated solenoid magnetic moment center; we turn the solenoid "off", and the cycle 

repeats with the next forward-positioned solenoid. This sequence reliably describes a sawtooth wave 

function, 
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 �(�) =
�

2
−

�

�
������ ���� �

� �

��
�� (A.19) 

Where �� is a single solenoid relay period, and �[1] is the coordinate strain for the temporal 

position �, meaning it strains the time coordinate such that at � = 0 the magnet center is a distance of 

�� from the forward-positioned solenoid, and when � = �� its position is (1 − �)⋅��. Fig. S7 shows 

the magnet position during a duty cycle relative to forward activated ("on") solenoid as a function of 

time.  

Last, we reason the introduction of the coordinate strain �[1]. Our simplified model (A.17) 

possesses a singularity, whereby at |��| = 0, as the magnet and solenoid coil magnetic moments coincide 

spatially, the Maxwell force scalar 3����|��||��|/4�|��|� goes to infinity. Correcting for this, we 

introduce the abovementioned coordinate strain �[1], such that the magnetic core ending its travel 

periodically every � = ��  maintains a fictitiously finite distance. We then evaluate this distance to 

produce the actual measured maximum Maxwell force. For details of this evaluation process, see section 

A.5.1. 

Last, in using a point-like dipole-dipole interaction force, it is essential to address the two 

hidden assumptions held within and address their implication: first, we assume magnetic moment 

centers' distance radius is much greater than the characteristic length of the magnet �(̃�) ≫ �; this model 

is otherwise only accurate for any distance and any finite magnet size when both dipoles are spherical 

magnets. Second, it is assumed that the poles in question cannot occupy the same space, hence the 

singularity at � =̃ 0, where the Maxwell force scalar 3����|��||��|/4�|��|� goes to infinity. As we 

do not strictly uphold either assumption; we propose a correction coefficient in the form of a coordinate 

strain �[1] , such that the magnetic core, ending its travel periodically every � = �� , maintains a 

fictitious finite distance. We thus accommodate for a realistic maximum force cutoff when the magnet 

and solenoid magnetic centers coincide. For details of this evaluation process, see A.5.1. 
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FIG. S7. Plot Showing the z-axis distance between magnetic moment centers' of permanent 

magnet and solenoid as a function of time during solenoid actuation sequence. The figure follows the 

magnetic piston center of mass traveling at an approximated constant velocity ��, taking t= ��[���] 

to travel from one solenoid to the next. The target-solenoid is then disengaged, and the next forward-

positioned solenoid is turned on, and the cycle repeats; the sawtooth wave function �(̃�) =

�� �1 − �/2 + (�/�)����������(� �/��)�� reliably describes this cycle. In dashed black, we present 

a non-strained temporal coordinate A = 1[1], and in pale blue, coordinate strain for the experimental 

system used in this study, � = 0.6797[1]. Plotted lines all use the following system parameters �� =

0.334[�/���], �� = 0.006315[�] and resulting relay period �� = 0.0188 ± 0.0007[���] taken as 

�� ≈ 0.019 [���].  

Following, we calculate the magnetic dipole-dipole force expression for the force balance 

equations. Substituting the above-defined magnetic moments ��  and ��  , the distance radius �� =

(��,0,�(̃�)), and scaling arguments into (A.17), we obtain the force expression in dimensional form, 

 

��,�→ ����
 

����� �� ��� �������� 
����� ��  �  ������ �� �

 

=  

−
3������,���������

�

4� ������ + �(̃�)��
�

���������������
����� ������ ��������� ⎝

⎜⎜
⎛ ���� − 4�� �(̃�)�

������ + �(̃�)��
�

�������������
�̃�

,0⏟
��

,
3 �(̃�)���� − 2�(̃�)�

������ + �(̃�)��
�

�������������
�̂ ⎠

⎟⎟
⎞

 , 

 

(A.20) 

Preforming order separation based on our small parameter � = �/�, we obtain the leading order force 

term, 

 

�(1):  

��,�→ �
(�)

���
 

����� �� ��� �������� 
����� ��  �  ������ �� �

 

= −
3������,���������

�

4���(̃�)�
�

�������������
����� ������ ���������

�0⏟
�̃� 

,0⏟
��

,−2�
�̂

� , (A.21) 

and the first-order correction,  
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�(�):  

��,�→ �
(�)

���
 

����� �� ��� �������� 
����� ��  �  ������ �� �

 

= −
3������,���������

�

4���(̃�)�
� �−

4�� 

�(̃�)���
�̃� 

,0⏟
��

,0⏟
�̂

� . (A.22) 

An important insight from this order correction is to elucidate the negligibility of the Maxwell 

force in our system as a centering force.  

A.4.3. Explicit Solution - Singular Perturbation Asymptotic Expansion. 

We now analyze system dynamics during the transient phase of the magnetic core prior to 

settling at an eccentric equilibrium position. The force balance equation (1.4) (see main text, section 

4.1) shows the importance of controlling this transition phase. Our model predicts that the spatial 

velocity gradient ���
(�)

/��,̃ governing the viscous friction term ∫ ∫ �����
(�)

/���̃�
��̃�

��
�/�

��/�

��

�
����, varies 

nonlinearly with eccentricity �(�) and its temporal gradient. 

Seeking a perturbation solution to the non-dimensional leading order force balance in the �-̃

axis detailing the transient magnet position during pumping operation (1.8). In attempting traditional 

singular perturbation approaches such as Boundary-Layer Theory or the Method of Multiple Scales, we 

encounter significant problems with order separation. In solving this, we propose a generalizable 

principle of reformulation and the introduction of a nonlinear evolution small parameter � ∈ [0,1]. We 

thus gradually evolve the nonlinearity incrementally until we reach the original form at � = 1 . 

Reformulating equation (1.8) using this principle we obtain, 

 

�
�∗

��
∗�

 (2��� + 1)

(1 + �)(1 − ��)
⋅

1

�(1 + �)(1 − ��)�
�
�

�

��

���
�����������������������������

����� ������� ��������  ����
�����

+ �⏟
����������

������� 
�����

− �⏟
�������� ������

������������
�����

+ �⏟
������−��
−��������

�����

= 0 , 

(A.23) 

with resulting characteristic scales for the viscous-elastic time scale �∗~ ���/����, the kinematic time 

scale ��
∗~ �/�� , and two non-dimensional numbers � = (������ �����������)/(������� ������) =

���/̃���  and � = (������������� ��������)/(������� ������) = ����/��. The constants � and 
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�� represent the ferrofluid's effective dynamic viscosity and linear spring coefficient, and � the center-

of-pressure coefficient relating back-pressure to the destabilizing force per unit length exerted on the 

levitated magnetic piston, which acts as an inverted pendulum. 

Next, we address the reduction of the exponent � in the first term, preventing order separation. 

We propose a first-order Taylor series approximation, 

 ��
����

��(1 + �)(1 − ��)�
3

2
�
� = � ����

�

���

= 1 +
3

2
 ln(� + 1) � + �(��) , (A.24) 

and introduce a perturbation series of powers of � for our eccentricity solution �(��),  

 �(��,�) = � ��(��)⋅�

∞

�= 0

= �0(��)+ �1(��)� + � ��
2

� . (A.25) 

Substituting (A.24) and (A.25) into (A.23) we are now able to obtain order separation; 

neglecting order higher then �� it now reads, 

 

� �−��
� + ���

� − ���
� +

3

2
��(�� + 1)��

� + 2
�∗

��
∗

���

���
��

� − ��
� + ��� − ���

−
3

2
� ��(�� + 1)�� +

3

2
� ��(�� + 1)�� +

3

2
��(�� + 1)��

+ 2���� −
3

2
� ��(�� + 1)+

3

2
� ��(�� + 1)− ��� + ��� + ��

+
�∗

��
∗

���

���
� + ��

� − � + � − ��� + ��� + �� +
�∗

��
∗

���

���
= 0 . 

(A.26) 

Separating for orders, we write the coefficient equations, with their respective IC, 

 �(��):  
�∗

��
∗

1

(1 + ��)

���

���
+ �� − � + � = 0, (A.27) 

 �ℎ��� ��(0)= 0.  (A.28) 

and, 

 

�(��): 
�∗

��
∗

���

���
+ ��(2�� − � + � + 1)

+

⎝

⎜
⎜
⎜
⎜
⎜
⎛

−��
� + ���

� − ���
� +

3

2
��(�� + 1)��

� + 2
�∗

��
∗ ��,��

��
�

−��
� + ��� − ��� −

3

2
� ��(�� + 1)��

+
3

2
� ��(�� + 1)�� +

3

2
��(�� + 1)��

−
3

2
� ��(�� + 1)+

3

2
� ��(�� + 1) ⎠

⎟
⎟
⎟
⎟
⎟
⎞

�����������������������������������
� ������������ ����

= 0, 
(A.29) 

 �ℎ��� ��(0)= 0.  (A.30) 
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The resulting order separation produces in leading order equation, a non-linear ODE reducible 

to a canonic Bernoulli ODE, whose explicit solution is,  

 ��(��)=

(� − �)�e
����

��
∗

�∗�����
��

∗

�∗�
− e

����
��

∗

�∗�
�

�e
����

��
∗

�∗�
+ e

����
��

∗

�∗�����
��

∗

�∗�
− �e

����
��

∗

�∗�
 . (A.31) 

The respective first-order correction (A.29) is a linear, first-order, heterogeneous ODE whose 

explicit solution is readily available. In Fig. S8, we present a comparison between leading (panel a) and 

first-order (panel b) approximation for � = 0.5, along with respective numerical solutions (dashed 

black) of the exact expression (1.8) (see main text, section 4.1); First-order approximation shows 

evident improvement in convergence to the numerical solution of the exact expression (dashed black), 

see Fig. S8b. It is noteworthy to point out that while it is of interest to investigate the convergence rate 

of the proposed method for higher orders and over a span of the nonlinear evolution parameter �; within 

the scope of this paper, we suffice in using the leading-order approximation, � = 0, as the minimal and 

satisfactory expression to capture the transient governing physics from which both our goal of an 

explicit pump performance curve expression and insights can be obtained.  

 

Fig. S8. Comparison of the approximate explicit solutions for leading and first-order 

corrections, confirming convergence to the respective numerical solution of the exact force balance 

expression in the ��-axis, equation (1.8), see main text, section 4.1. The time evolution of magnet 

position from an initial concentric position (at � = 0) for different values of � = ����/�� =

����/����, by varying the relay time period �� . Presented is a quantitive comparison between the 

numerical solution (dashed black) of the exact expression (A.23) for � = 1 (original force blaalnce 

equation) and its explicit leading-order asymptotic approximation (A.31) in solid lines. (a) Leading 

order solution. (b) First-order solution. Color gradient of solid lines indicate respective values of � =

[0,0.25,0.5,0.75,0.95]. 
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A.4.4. Pump Performance Curve. 

In this section, we present the step-by-step development of the pump performance curve from 

the �-axis force balance equation detail the dynamic balance of Maxwell stress terms, as are the result 

of dipole-dipole interaction between magnet and solenoid, with those from viscosity, gravity, and the 

rheology, with the latter resulting from the ferrofluid held by the magnetic field of the permanent 

magnet, 

 
��:  ��,�→ �,�
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+ � � � �
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2�

0
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�����������������������
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− �(��)2Δ��������
�������� ����
������ ������

= 0, 
(A.32) 

and present the full-form leading order slope curve Ω(�).  

We begin by defining the duty cycle performance curve ��,�� as the time-averaged pressure function, 

 ��,�� =
1

��

� Δ�(�)
��

�

�� . (A.33) 

 We set �� = ����� and calculate our pump pressure or equivalently our equilibrium back-

pressure as a function of time; substituting the explicit forms (1.6)(A.21), (1.3)(A.13) and reinstituting 

scaling arguments (A.3) into (1.4)(A.32), we obtain the explicit dimensional form of the �-axis force 

balance equation in terms of magnetic core velocity ��, geometric and material parameters,  
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(A.34) 

Solving for Δ�(�) we obtain our systems performance curve in the form, 

 
Δ�(�) =

3������,��������
�

2 ��̃(�)
−

2�����

�1 − ��(�)
− ���

2���
 . 

(A.35) 

Substituting �(�) ≈ ��(�)  with its explicit form (A.31) with � = 0  (i.e. No external 

acceleration acting on the pump), and reinstituting scaling arguments we obtain the explicit form for 

magnet dynamics in our workbench setup. Substitute (A.18) and (A.19) into (A.35) we obtain the 

explicit form of Δ�(�), 
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Substituting (A.36) into (A.33), then integrating over a single pumping duty cycle period �� 

and averaging, we obtain the pump performance curve ��,��, 
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(A.37) 

where the slope function Ω(�) governing the form-function of the performance curve is, 
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(A.38) 

It is of particular interest to examine the slope curve Ω(q) at its asymptotic limit when �∗/��
∗ ≪

1. At this limit the center-of-pressure force, which is proportional to magnet kinetics, dominates the 

magnetic cores eccentric position; this is the case for systems with fast-moving magnetic pistons and 

low ferrofluid viscosity. Our magnet dynamic's governing equation (A.23) becomes algebraic, 

 
�⏟

����������
������� 
�����

− �⏟
�������� ������

������������
�����

+ �⏟
���������
���������

�����

= 0 . 

(A.39) 

Reinstituting scaling arguments, and solving for �, 
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(A.40) 

We repeat the process detailed in equations (A.33) - (A.37); this time substituting (A.40) instead 

of (A.31), we obtain the asymptotic limit for Ω(q) when �∗/��
∗ ≪ 1, 

 Ω(q)~ �/πr�
� �1 − �(���̃πr�

� − ����)/���πr�
�

�������������������
����

�

�

, (A.41) 

where ���  is the steady-state eccentric position of the magnetic piston. This simplified limit-form 

informs qualitative insights into parameters relations' to curve steepness. 

A.5. Characterization of System Parameters.  

A.5.1. Estimation of Coordinate Strain Parameter �. 

To calculate the coordinate strain coefficient, we extract the strain parameter �[1] from the 

shut-off pressure by substituting ��,�� = ��ℎ��−��� and � = 0 into (A.37) (equation (1.11) from the 

main text, see section 4.1) resulting in, 
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(A.42) 

substituting the shut-off pressure (i.e., the trivially measured pressure when the outlet is plugged) we 

can solve for �[1]. Finally, substituting proposed experimental system parameters and solving, we 

obtain our ESP temporal strain coefficient � = 0.6797[1]. 

A.5.2. Evaluation Minimal Solenoid Relay Time, ��. 

In evaluating the minimal solenoid relay time experimentally, we propose two methods. First, 

having measured the max flow rate at run-out, q��� = 320 ± 12 [ml/min] = (5.33 ± 0.2)⋅
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10�� [m�/sec]  we can then calculate the minimal relay time using flow rate definition ���� =

���/��,����������
��

� � � �� + ����
����� ���� 

������

�

�

; with �� = 0.002[�] and �� = 6.315 ⋅10��[�]. Solving for ��,��� we 

estimate ��,���,��� = 0.0188 ± 0.0007 [���] taken as t�,���,��� ≈ 0.019[sec] for most calculations in 

the study. Second, we propose measuring the magnet travel time from the center of one solenoid to the 

next using ultrasound scanning. The ultrasound transducer (Philips, L18-5) and the ESP were positioned 

in the ultrasound transducer holder, as shown in Fig. S9a and S9b. Holder maintained the constant 

distance between the ESP and the ultrasound transducer. In order to conduct the ultrasound scanning 

experiment, we constructed a copper solenoid with a 1 [��] gap at the center as ultrasound cannot 

pass through the copper wiring (Fig. S9c and S9d). Therefore, the location of the magnet can be 

detected. In order to produce an identical magnetic field, the updated coil (i.e., with a one-millimeter 

gap at its center) had its number of windings updated so that its radius, coil density, copper wire 

diameter, and applied current all remained constant. Figure S9e shows the ultrasound images used to 

analyze the movement of the magnet. Ultrasound images are captured every 5[ms]; estimating a 

nominal relay time of  τ�,���,��� = 0.020 ± 0.005[sec]. The ultrasound and flow rate-based relay time, 

agree within 6% nominally. 
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Fig. S9. Ultrasound scanning for measuring magnet minimal relay time. (a) Photo of the 

ultrasound scanning setup. (b) Schematic illustration of the ultrasound scanning setup. (c) Schematic 

illustration of the updated coil with the 1 [��] gap at its center (d) Image of the assembled ESP used 

for ultrasound scanning experiment. (e)  Ultrasound scanned images and corresponding schematic 

illustrations at 0, 10, and 20 [��] after activating the forward driving solenoid. 

A.5.3. Estimation of Ferrofluid Linear Spring Coefficient ��. 

Magnetically saturated ferrofluids exhibit the ability to form and hold their shape by an induced 

distributed magnetic volume force. To capture this effect in �-̃axis force balance, see main text section 

4.1 equation (1.5), we seek a simplified and sufficient model. We propose a simple linear spring model, 

 � ���,
�����

= �� ⋅Δ� ,  (A.43) 

Where Δ�[�] is the radial strain applied to the ferrofluid droplet, and ��[�/�] the effective linear 

spring coefficient. To measure this effective spring coefficient, we mount an identical magnet as is used 

in the experimental setup; to ensure we induce an equivalent distributed magnetic volume force in the 

ferrofluid. We then apply FerroTec EFH1 ferrofluid to the magnet, forming a node at each pole end. 

The nodes in this setup collect at the magnetic poles rather than coat the magnet as they are unrestrained, 
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as would be the case inside the ESP core tube; however, it is inconsequential in measuring the spring 

coefficient. Using a scale (Mettler Toledo), we measure the weight increase as the micrometer probe 

end strains the ferrofluid coat (the end attachment is made of aluminum to avoid magnetic interference). 

Fig. S10(a-c) shows the experimental setup, Fig, S10d presents experimental data; the curve informs 

parameter �� as the force measured corresponds to the effective linear spring coefficient. The effective 

linear spring coefficient calculated for Ferrotec EFH1 in this setup is �� = 0.667[�/�]; error indicates 

a 68% confidence (one standard deviation) in the mean based on seven separate experiments. 

 

Fig. S10. Experimental setup for ferrofluid linear spring coefficient ��  measurement.   

(a) experimental setup; micrometer (Mitutoyo), with the AL end attachment used to strain the ferrofluid 

nodes. Each node is approximately 0.5 [��] thick. (b) closeup of the magnet mounting jig. (c) closeup 

of probe prior to contact with mounted magnet during an experiment. (d) Experimental measurement 

of linear spring coefficient  ��. Error bands indicate a 68% confidence (one standard deviation) in the 

mean based on seven experiments; markers represent the experimental mean value. 

A.5.4. Evaluation of Center-of-pressure Coefficient, �. 

In Calculating the center-of-pressure coefficient �[1], we substitute ��,�� = Δ� = 0,  � =

����  into the pump performance curve ��,��, equation (A.37) (main text section 4.1, equation (1.11)) 

and solve for �. Fig. S11 we present the numerical solution locating zeros, by which we find � =

2255[1].  
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Fig. S11. Theoretical evaluation of center-of-pressure coefficient �. Numerical solution for 

equation (A.37) solving for � when ��,�� = Δ� = 0 and � = ����. The curve informs parameter �, 

evaluated at � = 2255[1]. 

A.6.  Numerical Investigation of Viscous Fingering 

Phenomena. 

Examining the pump performance, we turn to investigate how a constant velocity-driven 

positive displacement pump, whereby magnet velocity ���� = ��/��  is held constant, provides a 

varying flow rate �. Utilizing the equation-based modeling capabilities of COMSOL Multiphysics 5.5, 

we investigate the 2D flow within the Hele-Shaw cell with a variable height. We map our gap 

curvilinear coordinate system (�,̃�,�) onto a 2D cartesian plane � − �, and model the variable Hele-

Shaw cell height by the gap curvilinear coordinate in the �-̃axis,  

 

ℎ(� = �/��)= �� − �� =
��� ������� �� 

��� ���������� ����������
 

= ���� cos(�/��)+ ����(1 + �)�
�

− (����)� + (���� cos(�/��))� − �� ;  

(A.44) 

for more details on the gap curvilinear coordinate system, see section A.4. The fluid domain consists of 

two immiscible Newtonian fluids: the pumped fluid (pale blue), water with dynamic viscosity �� =

0.0008[�� ⋅���],  and ferrofluid (dark gray) seal, with dynamic viscosity �� = 0.006[�� ⋅���]. The 

Hele-Shaw cell plane is of width ���� = 2���  and length ���� = � + ��  where ��[�]  is magnet 

radius, �[�] is permanent magnet length and �� = 0.001[�] an arbitrary small added length in the flow 

direction for visual clarity such that the ferrofluid seal front starts away from the fluid domain boundary.  
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Previous work [76–78] aimed at investigating the emergence of the Saffman-Taylor instability 

in constant cross-section Hele-Shaw cells in the presence of pressure-driven flow of displacing low 

dynamic viscosity fluid (��, water) forcing out a resident fluid of higher dynamic viscosity (��, oil). 

We modify the model to address the unique physics prevalent in our system. First, the dipole-dipole 

interaction between ferrofluid and both permanent magnet and forward driving solenoid. Second, 

solving for a Hele-Shaw cell with a spatially non-uniform gap geometry.  

We begin by formulating the conservation of mass for incompressible flow ∇ ⋅� = 0 with � =

(��,��) a two-dimensional velocity vector in the � and � axis respectively and the del operator ∇=

(�/��,�/��). We apply conservation of momentum in the form of a modified Darcy's law for porous 

media flow � = −
�

�
∇� + ��

(�)
, where the permeability tensor is simplified to a gap dependent scalar 

� = � = ℎ�(�) /12[��], the dynamic viscosity � = �(��) is a function of the solute concentration 

variable by which we differentiate between the fluids (further discussed below), � is the fluid pressure, 

and ��
(�)

= ��,�→ �
(�)

+ ��,�→ �
(�)

 is the adverse Maxwell pressure vector due to magnet-ferrofluid and 

solenoid-ferrofluid dipole-dipole interaction averaged over a characteristic length, 
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, (A.45) 
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. (A.46) 

Where �� = (0.015,0)[�� �] is the permanent magnet magnetic moment, for which |��| =

���,���[�/�] ⋅����[��], with ���,���  the magnetic field strength of the magnet (i.e., magnetic 
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piston core), as detailed in the manufacturer datasheet, and ���� the volume of the magnet; �� =

(4.85 ⋅10��,0)[�� �]  is the magnetic moment of a solenoid coil, |��| = ��������
� , for which 

�[�������  ���]  is the wire coiling density or the number of windings per unit length assuming all 

are a single layer winding, �[�] is the current running through the coil, and ��[�] the length of a 

single solenoid coil; last, �� = (7.38 ⋅10��,0)[�� �] is the magnetic dipole moment of the saturated 

ferrofluid, where |��| = ���,�����[�/�] ⋅������[��], with ���,�����  the magnetic field strength of 

the saturated ferrofluid, as detailed in the manufacturer datasheet, and ������  the volume of the 

ferrofluid seal.  

Using this simplistic model, we capture the underlying physical phenomena of these far more 

complex superimposed dipole-dipole interactions. These simplifications include: neglection of 

interfacial tension effects from the choice of particular fluids, neglection of circumferential dipole-

dipole interactions, neglection of capillary action and surface tension, and last we averaging along 

characteristic dimensions. All these lend to a stable convergent model at the expense of quantitative 

accuracy; an acceptable compromise in the case of this study, as the sole aim of this model is to inform 

as to the unique emergence of stable oscillating viscous fingers patterns in the presence of restoring 

Maxwell forces under these conditions. We thus reason the means by which a constant velocity-driven 

positive displacement pump provides a varying flow rate �; as an effective steady-state flow rate "leak" 

is established and maintained past the ferrofluid seal.  

In our model, we set viscosity as concentration-dependent � = �����; we conveniently follow 

Zimmerman and Homsey [77] and propose (1/�)��/��� = −ℛ such that  ℛ = ln(�) where  � =

��/�� is the mobility ratio. This simplified model suggest viscosity decreases exponentially with solute 

concentration variable ��, such that �� = 1 is the viscosity of �1 (the less viscous - water) and �� = 0, 

is the viscosity of �2 (higher viscosity - ferrofluid). Solving ����� we find the fluid viscosity fucntion 

� = ����� = �� ���� ��(�). 
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Next, we formulate the solute transport of the fluid interface in the form of an advection-

diffusion equation over the concentration-independent variable ��[1], 

 �
���

��
= ∇ ⋅(�∇)�� − � ⋅∇�� .  (A.47) 

The dispersion tensor is given by   
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� , (A.48) 

following in the steps of Coutinho and Alves [76]. We define: the local fluid velocity magnitude of 

�|�|� = ���
� + ��

� ; the longitudinal dispersive length as �� = ��(�)/� + �� �1 − (��/�)� −

���/��
�

�, for which the longitudinal dispersion (often simply referred to as dispersion) is empirically 

defined according to [79,80] as ��(�)= �� + (2/105)(����/��); the transversal dispersive length  

�� = ��/�  defined by the molecular diffusivity �� = 2.299 ⋅10��[��/���]  (taken to be that of 

water at 25[℃]). Last we define � = ����� =
������

���
�  our superficial or characteristic velocity, which 

is the average leak velocity past the ferrofluid seal; as we infer from the difference between the known 

run-out flow rate ����[��/���] and the resulting flow rate �[��/���] at the outlet. 

Concluding our model, we set the boundary and initial conditions for a well-posed problem. Our system 

starts from rest setting �(�,�,0) = 0 ,   (��(�,�,�)/��)|��� = 0 over the fluid field; for the transport 

equation, we define the fluid-fluid interface ��(�,�,�) = �1 − �(� − ��)� + ��(�,�)exp(−(� −

��)�/��) in which �(� − ��) is a Heaviside step function positioned at �� = 0[�], providing the initial 

position of the fluid-fluid interface, � = ���� ⋅10��[�] denotes the size of the random disturbance 

initial pattern �(�,�) and last, � = �[�]  gives its variance in the z-direction. Finally, we define 

boundary conditions for the inlet velocity (−(�/�) ��/��)|��� = �����, the ambient pressure at the 

outlet �(�,�,�) = 0, and symmetry conditions for the top and bottom walls such that: �(�,0,�) =

�(�,2���,�) and (∂�(�,�,�)/��)|��� = (∂�(�,�,�)/��)|������
.  
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Figure S12 presents a system illustration examining the transient evolution of the ferrofluid seal 

front from both a 2D top view and 3D projection. Panel (a) shows system schematics, illustrating the 

3D to 2D mapping and the 2D fluid domain solved for. Panel (b) - (d) show Snapshots of the system at 

optimal work point ��� ≈ 225 [�� �����] with respective parameters � = 4.8   and |���| → 1, for 

time � ≈ 0.011, 0.022 and   � ≫ �(�∗) [���] respectively. Column (�) shows the ferrofluid seal front 

evolution in a theoretical system absent of the Maxwell restoring forces; steady-state in this case will 

be at � → ∞ as ferrofluid seal will exponentially decay until it is all washed away. Opposing it, in 

column (��), we show identical time snapshots; the system achieves a stable oscillating viscous finger 

pattern for � > �(�∗) at solenoid-train actuation frequency, see Movie S3 and S4.  

In conclusion, the qualitative effects of restoring Maxwell forces are evident. First is the 

reduction of the leak cross-section (the breach seen in pale blue past the boundary at � = �), leading to 

an increase in generated pump pressure. We provide experimental evidence for this conclusion in the 

main text, section A.4.4 figure 4c, where we compare performance with (black line) and without (red 

line) ferrofluid; respective to column (II) where the seal is maintained in steady-state, while column (I) 

where all ferrofluid is stripped (washed away) from the magnet in the absence of restoring Maxwell 

forces. Second, we demonstrate the emergence of the hypothesized stable oscillating viscous finger 

structure, maintained by the unique force equilibrium between Maxwell and viscous forces. 
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Fig. S12. Results of numerical simulations of ferrofluid seal dynamics in the presence and 

absence of Maxwell dipole-dipole interactions between magnet, solenoid, and ferrofluid. Snapshots 

examine ferrofluid seal front evolution at optimal work point at ��� ≈ 225 [�� �����] with respective 

parameters � = 4.8  and |���| → 1. We mark the ferrofluid in dark gray and pump fluid (water) pale 

blue. Column (I) shows the resulting seal front in the presence of viscous friction alone; Column (II) 

shows the resulting seal front due to viscous friction and the Maxwell forces from dipole-dipole 

interaction of ferrofluid with both magnet and solenoid coil. (a) Illustration of examined configuration 

and schematics of the flow system. We visualize the inner core tube diameter (red) and magnet outer 

diameter (green) to clarify the coordinate mapping in the subsequent panels. (b) The emergence of 

distinct viscous fingers (Saffman-Taylor instability) at � ≈ 0.011[���]. (c) Snapshot of seal front at t≈

0.022[sec], viscous fingers complete growth prior to seal breach. (d) Snapshot of seal front at � ≫

�(�∗)[���], seal front remaining has either achieved steady-state and will retain its form over time by 

force equilibrium, Column (II), or remaining ferrofluid seal will continue to exponentially decay until 

it is all washed away, Column (I).  
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A.7. Strain Rate Estimation 

We define the non-dimensional strain rate based on the experimental data Fig. 7c (see main 

text, section 5) as, 

 Ε̇ =
(Δℓ/ℓ�)

Δ�/�∗
 , (A.49) 

where �∗~ ���/���� ≈ 0.113[sec]  is the viscous elastic time scale. 

Deformation Section �����[���] ����[���] ��/�� [�] �̇ [�] 

Contraction (��) 1.6 3 0.15 0.012 
Bend (���) 5.1 5.7 20°/180° 0.020 
Bend (��) 6.7 7.6 20°/180° 0.013 

TABLE. A.2. Tabulated data and calculated non-dimensional strain rate �̇  during 
obstruction course dynamic deformation. 

 


