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Appendix A 

 

TABLE. A.1. Characterization of the state-of-the-art in soft robotics1,2, used in figure 1. 

Tabulated data, Columns 1-11 out of 20. 
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TABLE. A.1. Characterization of the state-of-the-art in soft robotics1,2, used in figure 1. 

Tabulated data, Columns 12-20 out of 20. 

 

1 D
ata p

resen
ted

 h
erein

 is b
ased

 o
n

 in
fo

rm
atio

n
 rep

o
rted

 o
r d

eriv
ed

 im
p

licitly
 v

ia im
ag

es an
d

 fig
u

res w
h

en
 n

o
 su

ch
 in

fo
rm

atio
n

 w
as 

p
ro

v
id

ed
 ex

p
licitly

. A
cco

rd
in

g
ly

, so
m

e d
ata m

ay
 v

ary
 b

y
 a facto

r. H
o

w
ev

er, g
reat care w

as tak
en

 to
 en

su
re th

at th
e critical p

aram
eters 

asso
ciated

 w
ith

 a g
iv

en
 sy

stem
 are id

en
tified

 to
 p

ro
p

erly
 p

o
sitio

n
 it in

 th
e co

rrec
t q

u
ad

ran
t. 

2 In
 th

e ab
sen

ce o
f an

y
 referen

ces to
 actu

al actu
atio

n
 tim

es in
 an

 article, care w
as tak

en
 to

 p
ick

 a v
alu

e th
at w

as m
atch

ed
 b

y
 th

e sy
stem

's 

o
w

n
 tim

escales in
 o

rd
er to

 p
o

sitio
n

 th
e w

o
rk

 in
 th

e rig
h

t q
u

ad
ran

t in
 lin

e w
ith

 th
e au

th
o

rs' rep
o

rt o
f th

e tran
sien

t reg
im

e (q
u

asistatic o
r 

in
ertial). 



HARNESSING NON-UNIFORM PRESSURE DISTRIBUTIONS IN SOFT ACTUATORS 5 

 

Appendix B 

B.1. Nomenclature 
We define vector variables by bold letters, direction vectors by hat notation, non-dimensional 

variables by tilde or capital letters and characteristic values by asterisk superscripts. 

System physical parameters 

𝑙𝑠 Beam length. 

ℎ𝑠 Beam height. 

𝑤𝑠 Beam width. 

𝐸 Beam material modulus of elasticity. 

𝜌𝑠 Beam material mass density. 

𝑓𝑚 Solid mass fraction. 

𝑓𝑒 Cross sectional extensional stiffness correction coefficient, comparing the 

honeycomb structure to a full rectangular cross section structure with identical 

dimensions. 

𝑓𝑖 Cross sectional flexural stiffness correction coefficient, comparing the honeycomb 

structure to a full rectangular cross section structure with identical dimensions. 

𝑚 Beam mass per unit length. 

𝐼 Beam cross section moment of inertia. 

𝑦11, 𝑌11 Gyration radius squared, and its non-dimensional form. 

𝜓 Change in beam slope due to a single pressurized bladder (intrinsically non-

dimensional). 

𝜁, 𝜁 Change in beam length due to a single pressurized bladder, and its non-dimensional 

form. 

𝜙,𝛷 Structure length-wise bladder density, and its non-dimensional form. 

𝑙𝑏 Length of a single bladder segment. 

ℎ𝑏 Height of a fluidic bladder cross section. 

𝑤𝑏 Width of a fluidic bladder cross section. 

𝑛 Total number of bladder (fluidic cavities) in the honeycomb structure. 

𝜌𝑓 Fluid domain material mass density. 

𝜇 Fluid dynamic viscosity. 

𝜀1 Small parameter representing slenderness of the fluidic domain. 

𝑟𝑐 Connective tubing radius. 

𝑙 Total length of connective tubing configuration. 

𝑙𝑐 Length of a single connective tube. 

𝑛𝑐 Total number of connective tubes in a given configuration. 

𝜎𝑝 Ratio of 𝑎0
∗  the characteristic cross-section at gage pressure to 𝑎1

∗ the characteristic 

change in bladder cross-section. 

𝑟𝑒𝑓𝑓 Effective dimensional scale related to the configuration of the flow-path i.e. averaged 

hydraulic radii of bladder and connective tubing. 

𝐶̃𝑏 Dimensionless constant, related to the bladder flow-path i.e. shape of the bladder 

cross-section. 

𝐶̃𝑐 Dimensionless constant, related to the connective tubing flow-path i.e. shape of 

connective tube cross-section. 
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Variables and arguments 

𝑡, 𝑇, 𝑇𝑠 Time dimension, viscous-elastic non-dimensional time, and Inertial-elastic non-

dimensional time. 

𝜃, 𝛩 Curvilinear length coordinate along the beam reference curve, and its non-

dimensional form. 

(𝒙̂𝒔, 𝒚̂𝒔, 𝒛̂𝒔) Solid domain lab frame of reference. 

(𝑥𝑠, 𝑦𝑠, 𝑧𝑠) , 

(𝑋𝑠, 𝑌𝑠, 𝑍𝑠) 

Solid domain lab frame coordinates, and their non-dimensional form. 

𝒙 Lab frame position vector for the beam reference curve (i.e. the neutral axis). 

( 𝒆 
𝒔
𝒏, 𝒆 
𝒔
𝝉, 𝒆 
𝒔
𝒕) ,  

( 𝑬 
𝒔
𝒏, 𝑬 
𝒔
𝝉, 𝑬 
𝒔
𝒕) 

Spatial Serret-Ferent triad (at time 𝑡) associated with the current position along the 

reference curve in a curvilinear frame using the unit tangent 𝒆 
𝑠
𝑡 pointing the direction 

of motion, the unit normal 𝒆 
𝑠
𝑛 , unit binormal 𝒆 

𝑠
𝜏, and their non-dimensional form. 

(𝒅𝟏, 𝒅𝟐, 𝒅𝟑) Spatial director (strain vector at time 𝑡 ), in the curvilinear frame of reference 

( 𝒆 
𝒔
𝒏, 𝒆 
𝒔
𝝉, 𝒆 
𝒔
𝒕). 

(𝑫𝟏, 𝑫𝟐, 𝑫𝟑) Material director (strain vector at time 𝑡 = 0), in the curvilinear frame of reference 

( 𝒆 
𝒔
𝒏, 𝒆 
𝒔
𝝉, 𝒆 
𝒔
𝒕). 

𝑢1, 𝑈1 Beam deflection displacement and its non-dimensional form. 

𝑢3, 𝑈3 Beam extension displacement and its non-dimensional form. 

𝜆𝑠, 𝜆̃𝑠 Total structure measure of stretch, Intrinsic kinematic variable, and its non-

dimensional form. 

𝜆𝑒 , 𝜆̃𝑒 Measure of stretch due to external traction, Intrinsic kinematic variable, and its non-

dimensional form. 

𝜆𝑝, 𝜆̃𝑝 Measure of stretch due to fluidic pressure, Intrinsic kinematic variable, and its non-

dimensional form. 

𝛼𝑠, 𝛼̃𝑠 Total structure measure of curvature, Intrinsic kinematic variable, and its non-

dimensional form. 

𝛼𝑒 , 𝛼̃𝑒 Measure of curvature due to external traction, Intrinsic kinematic variable, and its 

non-dimensional form. 

𝛼𝑝, 𝛼̃𝑝 Measure of curvature due to fluidic pressure, Intrinsic kinematic variable, and its non-

dimensional form. 

𝑁𝑒 , 𝑁̃𝑒 Cross sectional internal normal force resultant due to traction, and its non-

dimensional form. 

𝑉𝑒 , 𝑉̃𝑒 Cross sectional internal shear force resultant due to traction, and its non-dimensional 

form. 

𝑀𝑒 , 𝑀̃𝑒 Cross sectional internal moment resultant due to traction, and its non-dimensional 

form. 

𝒅𝟑 
  The reciprocal vector to 𝒅3. 

𝒃,𝑩 External distributed force per unit mass. 

𝒃𝟏, 𝑩𝟏 External distributed moment per unit mass. 

𝒃𝒃, 𝑩𝒃 Body force distribution per unit mass, and its non-dimensional form. 

𝒃𝒄, 𝑩𝒄 Contact force distribution per unit mass, and its non-dimensional form. 

𝒃𝒃
𝟏, 𝑩𝒃

𝟏 First moment of body force distribution per unit mass, and its non-dimensional form. 

𝒃𝒄
𝟏, 𝑩𝒄

𝟏 First moment of contact force distribution per unit mass, and its non-dimensional 

form. 
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(𝒙̂𝒇, 𝒚̂𝒇, 𝒛̂𝒇) Fluidic domain curvilinear frame of reference. Defined such that the 𝒙̂𝑓  is the 

streamwise direction along bladder length 𝑙𝑏, and the cross sectional plane 𝒚̂𝑓 − 𝒛̂𝑓 

is perpendicular to 𝒙̂𝑓. 

(𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓) , 

(𝑋𝑓 , 𝑌𝑓 , 𝑍𝑓) 

Fluid domain curvilinear coordinates, and their non-dimensional form. 

(𝑢, 𝑣, 𝑤) , 

(𝑈, 𝑉,𝑊) 

Fluid domain velocity components, and their non-dimensional form. 

𝑝, 𝑃 Fluid domain pressure, and its non-dimensional form. 

𝑝′, 𝑃′ Bladder effective fluid pressure for slope generation, and its non-dimensional form. 

𝑝̅, 𝑃̅ Bladder effective fluid pressure for extension generation, and its non-dimensional 

form. 

𝑞, 𝑄 Volume flow rate in fluidic cross section, and its non-dimensional form. 

𝑞1
𝑏 , 𝑄1

𝑏 Bladder permeability, and its non-dimensional form. 

𝑞1
𝑐 , 𝑄1

𝑐 Connective tubes' permeability, and its non-dimensional form. 

𝑎,𝐴 Fluid domain cross section area, and its non-dimensional form. 

𝑎0,𝐴0 Cross section area of the bladder-tube array at gauge pressure 𝑝 = 0, and its non-

dimensional form. 

𝑎𝑝1
,𝐴𝑝1 The change of the cross section area due to the fluid pressure, and its non-dimensional 

form. 

𝑎𝑁1,𝐴𝑁1 The change in cross section are due to extensional beam deformation, and its non-

dimensional form. 

𝑎𝑀1,𝐴𝑀1 The change in cross section due to beam bending deformation, and its non-

dimensional form. 

 

Characteristic Scales 

𝑢1
∗ Characteristic beam deflection. 

𝑢3
∗  Characteristic beam extension. 

𝑏𝑏
1∗ Characteristic first moment of body force distribution per unit mass. 

𝑏𝑐
1∗ Characteristic first moment of contact force distribution per unit mass. 

𝑏𝑏
∗ Characteristic body force distribution per unit mass. 

𝑏𝑐
∗ Characteristic contact force distribution per unit mass. 

𝑏𝑥
∗ Characteristic shear force per unit length. 

𝑏𝑧
∗ Characteristic normal force per unit length. 

𝑏∗ Characteristic external force per unit mass. 

𝑏1∗ Characteristic external moment applied per unit mass. 

𝑏𝑥
1∗ Characteristic first moment applied by shear force (𝑥 − 𝑎𝑥𝑖𝑠) per unit length. 

𝑏𝑧
1∗ Characteristic first moment applied by normal force (𝑧 − 𝑎𝑥𝑖𝑠) per unit length.  

𝜙 
∗ Characteristic bladder density. 

𝑡𝑠
∗ Elastic-inertial time scale. 

𝛼𝑠
∗ Characteristic curvature. 

𝑀𝑒
∗ Characteristic moment resultant. 

𝑦11
∗  Characteristic squared radius of gyration. 

(𝑢∗, 𝑣∗, 𝑤∗) Characteristic fluid velocity. 

𝑎0
∗ Characteristic cross-section at gage pressure. 

𝑎1
∗ Characteristic change in bladder cross-section. 
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𝑡𝑓
∗ Viscous-elastic time scale. 

𝑢∗ Characteristic axial flow velocity. 

𝑝∗ Characteristic fluid pressure. 

TABLE. A.1. Summary of Nomenclature for proposed model. Entries are by order of 

appearance. (a) system physical parameters. (b) Variable and arguments. (c) Characteristic scales. 

Calculated entries are referred to respective sections. 

B.2. Problem Formulation 
We consider the dynamics of an elastic beam, initially at rest. The internal structure of the beam 

is a fluid filled bladder matrix interconnected by slender tubing (as illustrated in Fig. B.1.). Pressure 

within the fluid field both generates and is induced by the deformation of the appendage 

(interchangeably referred to as leg). Note: bladders in this appendix are referred to as top and bottom 

respective right and left in the main text due to system orientation in respective figure.  

 
FIG. B.1. Illustration of the studied soft robotics appendage, with interconnected bladder-

tube array configuration.  

 

We define vector variables by bold letters, direction vectors by hat notation, non-dimensional 

variables by tilde or capital letters and characteristic values by asterisk superscripts. We define 

appendage length 𝑙𝑠, height ℎ𝑠, width 𝑤𝑠 and require a slender geometry with ℎ𝑠/𝑙𝑠 ≪ 1 and 𝑤𝑠/𝑙𝑠 ≪

1. Appendage material modulus of elasticity and mass density are defined by 𝐸 and 𝜌𝑠, respectively. 

We define a lab frame of reference (𝒆1, 𝒆2, 𝒆3) = (𝒙̂𝑠, 𝒚̂𝑠, 𝒛̂𝑠) and a lab frame position vector 𝒙 =

(𝑥𝑠(𝜃, 𝑡), 𝑦𝑠(𝜃, 𝑡), 𝑧𝑠(𝜃, 𝑡)) for the appendage reference curve (i.e. the neutral axis).  We define the 

deformation of a material fiber in the cross section area in a curvilinear frame of reference using the 

strain vectors, denoted spatial directors (𝒅1(𝜃, 𝑡), 𝒅2(𝜃, 𝑡), 𝒅3(𝜃, 𝑡)) and respective material directors 

(𝑫1(𝜃), 𝑫2(𝜃), 𝑫3(𝜃)). We define a Serret-Ferent triad associated with the current position along the 

reference curve in a curvilinear frame using the unit tangent 𝒆 
𝒔
𝑡 pointing the direction of motion, the 
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unit normal 𝒆 
𝒔
𝑛  , unit binormal 𝒆 

𝒔
𝜏 , and define a curvilinear length coordinate 𝜃  along the beam 

reference curve (see Figs. B.1). 

We limit our analysis to a 2D deformation thus considering only directors (𝒅1(𝜃, 𝑡), 𝒅3(𝜃, 𝑡)). 

We thus redefine the lab frame position vector 𝒙 = (𝑥𝑠(𝜃, 𝑡), 𝑧𝑠(𝜃, 𝑡)) with the deflection axis in the 

𝒆1  direction being  𝑥𝑠(𝜃, 𝑡) = 𝑥0(𝜃) + 𝑢1(𝜃, 𝑡)  and extension axis in the 𝒆3  direction 𝑧𝑠(𝜃, 𝑡) =

𝑧0(𝜃) + 𝑢3(𝜃, 𝑡) where for an appendage initially (at 𝑡 = 0) straight at unstrained state,   𝑥0(𝜃) =

𝐶𝑜𝑛𝑠𝑡, 𝑧0(𝜃) = 𝜃, and thus  𝑥𝑠(𝜃, 𝑡) = 𝐶𝑜𝑛𝑠𝑡 + 𝑢1(𝜃, 𝑡) and 𝑧𝑠(𝜃, 𝑡) = 𝜃 + 𝑢3(𝜃, 𝑡) respectively.  

The explicit representations of relevant directors are, 

 𝒅1 = (
𝜕𝑧𝑠
𝜕𝜃 

, −
𝜕𝑥𝑠
𝜕𝜃 
) , (B.1) 

 𝒅3 = (
𝜕𝑥𝑠
𝜕𝜃 

,
𝜕𝑧𝑠
𝜕𝜃 
) . (B.2) 

A parallel bladders' matrix is interconnected and arranged perpendicular to the 𝒅3 direction 

along the appendage length. The length of a single bladder segment is denoted 𝑙𝑏. The effect of the 

fluidic cavities on structure properties are represented by the solid mass fraction 𝑓𝑚 = ((𝑤𝑏ℎ𝑏𝑙𝑏𝑛)𝜌𝑓 +

(𝑙𝑠𝑤𝑠ℎ𝑠 −𝑤𝑏ℎ𝑏𝑙𝑏𝑛)𝜌𝑠)/(𝑙𝑠𝑤𝑠ℎ𝑠𝜌𝑠) , mass per unit length 𝑚 = 𝜌𝑠(𝑤𝑠ℎ𝑠)𝑓𝑚 ,  coefficients  𝑓𝑒 , 𝑓𝑖 

correct for cross section extensional and flexural stiffness reduction compared with a full elastic beam, 

appendage cross section moment of inertia 𝐼 = (𝑤𝑠ℎ𝑠
3/12)𝑓𝑖 and the squared gyration radius 𝑦11 =

(𝜌𝑠/𝑚)𝐼. We limit our analysis to configurations where the bladders are taken as unit-cells of the 

structure 𝑤𝑏/𝑙𝑠 ≪ 1 and (𝑤𝑏 ⋅ 𝑛/2)/𝑙𝑠~1, where  𝑛/2 is the total number of bladders arranged along 

the length 𝑙𝑠 ; enabling us in order to approximate the above structural properties to constants 

representing an averaged property of the solid domain.  

Constitutive laws are formulated using the intrinsic kinematic variables of 𝜆 for the measure of 

stretch and 𝛼 for curvature. The total stretch is defined by  𝜆𝑠 = 𝜆𝑒 + 𝜆𝑝 and total curvature is defined 

by 𝛼𝑠 = 𝛼𝑒 + 𝛼𝑝. Both 𝜆𝑒 and 𝛼𝑒  are due to external traction and 𝜆𝑝, 𝛼𝑝 are due to pressure in the 

fluidic cavities. We define the cross-sectional internal forces and moment resultants due to traction for 

normal force 𝑁𝑒
 , shear force 𝑉𝑒

  and moment 𝑀𝑒
 . A single pressurized bladder will create a change in 

beam slope 𝜓 and a change in beam length defined 𝜁, and structure bladder density 𝜙 = (𝑛/2)/𝑙𝑠.   

We introduce a fluidic domain coordinate system (𝑥𝑓 , 𝑦𝑓 , 𝑧𝑓) defined such that the 𝒙̂𝑓 is the 

streamwise direction along bladder length 𝑙𝑏 (see Fig. B.1). The plane 𝒚̂𝑓 − 𝒛̂𝑓 is perpendicular to 𝒙̂𝑓. 

Bladder height is ℎ𝑏 and width 𝑤𝑏. We define a small parameter representing slenderness of the fluidic 

domain 𝜀1 = 2𝑟𝑐/𝑙 ≪ 1, where 𝑟𝑐 is the tube radius and 𝑙 = 𝑙𝑐  𝑛𝑐 the total length of connective tubing, 

with 𝑙𝑐 the length of a single connective tube and 𝑛𝑐 as the total number of connective tubes in a given 

configuration. Tube and bladder characteristic cross section dimensional scale is 𝑟𝑐~ℎ𝑏. The parameters 

of the fluidic domain are viscosity 𝜇, velocity (𝑢, 𝑣, 𝑤), gauge pressure 𝑝. Under small local strains 

assumption, bladder cross section area may be expanded to    𝑎(𝑥𝑓 , 𝑝, 𝑁𝑒 , 𝑀𝑒) = 𝑎0(𝑥𝑓) + 𝑎𝑝1(𝑝, 𝑥𝑓) +

𝑎𝑁1(𝑁𝑒 , 𝑥𝑓) + 𝑎𝑀1(𝑀𝑒 , 𝑥𝑓), where 𝑎0(𝑥𝑓) is the cross section area of the fluidic domain i.e. bladder-

tube array, at the gauge pressure 𝑝 = 0, and 𝑎𝑝1(𝑝, 𝑥𝑓) describes the change of the cross section area 

due to the fluid pressure, 𝑎𝑁1(𝑁𝑒 , 𝑥𝑓) the change in cross section are due to extensional appendage 

deformation and 𝑎𝑀1(𝑀𝑒 , 𝑥𝑓) the change in cross section due to appendage bending deformation. The 

governing equations for the incompressible, creeping, Newtonian flow are the stokes equation, 

 𝛁p = 𝜇∇2𝒖 (B.3) 

and conservation of mass 

 𝛁 ⋅ 𝒖 = 0. (B.4) 

Over the solid domain we use an intrinsic Cosserat rod formulation following Rubin [1,2], 

limited for the assumption of negligible cross sectional extension, cross sectional shear and tangential 
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shear respectively limiting the cross section to maintain its initial shape and remain perpendicular the 

reference curve,  

 
𝑚𝒙̈ = 𝑚𝒃 + [𝑁𝑒 ,3− 𝛼𝑒𝑉𝑒] 𝐞𝐭 

𝑠 + [𝑉𝑒 ,3+ 𝛼𝑒𝑁𝑒] 𝐞𝐧 
s

+ [ 𝒅3 
 ⋅ 𝑚(𝒃1 − 𝑦11 𝒅̈1 

  ) 𝒅1 
  ],3 

(B.5) 

where 𝒅3 
 = 𝒅3/𝑑33  is the reciprocal vector to 𝒅3  and the subscript ,3  stands for the partial 

derivative with respect to 𝜃. The external distributed force 𝒃 per unit mass, and external distributed 

moment per unit mass 𝒃1 are defined such,  

 𝒃 = 𝒃𝑏 + 𝒃𝑐  , (B.6) 

 𝒃1 = 𝒃𝑏
1 + 𝒃𝑐

1, (B.7) 

where body force distribution per unit mass 𝒃𝑏 = (𝑏𝑏𝑥[𝑁𝑚
2/𝐾𝑔] , 𝑏𝑏𝑧[𝑁𝑚

2/𝐾𝑔]) 𝜌𝑠 𝑚⁄ , contact 

force distribution per unit mass 𝒃𝑐 = (𝑏𝑐𝑥[𝑁/𝑚], 𝑏𝑐𝑧[𝑁/𝑚]) 𝑚⁄ , first moment of body force 

distribution per unit mass 𝒃𝑏
1 =

𝜌𝑠

𝑚
(𝑏𝑏
1
𝑥
[𝑁𝑚3/𝐾𝑔] , 𝑏𝑏

1
𝑧
[𝑁𝑚3/𝐾𝑔]), first moment of contact force 

distribution per unit mass 𝒃𝑐
1 =

1

𝑚
(𝑏𝑐
1
𝑥
[𝑁𝑚/𝑚] , 𝑏𝑐

1
𝑧
[𝑁𝑚/𝑚]). We define characteristic appendage 

deflection 𝑢1
∗[𝑚], characteristic first moment of body force distribution per unit mass 𝑏𝑏

1∗[𝑁𝑚/𝐾𝑔], 

characteristic first moment of contact force distribution per unit mass 𝑏𝑐
1∗[𝑁𝑚/𝐾𝑔], characteristic body 

force distribution per unit mass 𝑏𝑏
∗[𝑁/𝐾𝑔] , characteristic contact force distribution per unit mass 

𝑏𝑐
∗[𝑁/𝐾𝑔], characteristic shear force per unit length 𝑏𝑥

∗~𝑉𝑒
∗/𝑙𝑠[𝑁/𝑚], characteristic normal force per 

unit length 𝑏𝑧
∗~𝑁𝑒

∗/𝑙𝑠[𝑁/𝑚] , characteristic external force per unit mass 𝑏∗~𝑏𝑥
∗/𝑚[𝑁/𝐾𝑔] , 

characteristic external moment applied per unit mass 𝑏1∗~𝑏𝑥
1∗/𝑚[𝑁𝑚/𝐾𝑔], characteristic first moment 

applied by shear force (𝑥 − 𝑎𝑥𝑖𝑠) per unit length 𝑏𝑥
1∗~𝑏𝑥

∗  𝑙𝑠[𝑁𝑚/𝑚],  characteristic first moment 

applied by normal force (𝑧 − 𝑎𝑥𝑖𝑠) per unit length 𝑏𝑧
1∗~𝑏𝑧

∗ 𝑙𝑠[𝑁𝑚/𝑚]. Next, we denote the solid field 

characteristic appendage extension 𝑢3
∗~𝑢1

∗, characteristic bladder density 𝜙 
∗[𝑏𝑒𝑙𝑙𝑜𝑤/𝑚], characteristic 

elastic-inertial time scale 𝑡𝑠
∗[𝑠𝑒𝑐], characteristic curvature 𝛼𝑠

∗[1/𝑚], characteristic moment resultant 

𝑀𝑒
∗[𝑁𝑚], characteristic normal force resultant 𝑁𝑒

∗[𝑁], characteristic shear force resultant 𝑉𝑒
∗[𝑁] and 

characteristic squared radius of gyration 𝑦11
∗ ~𝑙𝑠

2[𝑚2]. Over the fluid field, we define the characteristic 

velocity (𝑢∗, 𝑣∗, 𝑤∗)[𝑚/𝑠𝑒𝑐],  characteristic gauge pressure 𝑝∗[𝑃𝑎] , characteristic fluidic domain 

cross-section at gage pressure 𝑎0
∗[𝑚2] , characteristic change in bladder cross-section 𝑎1

∗[𝑚2]  and 

viscous-elastic time scale 𝑡𝑓
∗[𝑠𝑒𝑐]. 

Next we define the normalized variables and coordinates. Normalized appendage curvilinear 

coordinate 𝛩 = 𝜃/𝑙𝑠 , inertial-elastic time 𝑇𝑠 = 𝑡/𝑡𝑠
∗ , curvilinear deflection axis 𝑋𝑠 = 𝑥𝑠\𝑢1

∗  and 

deflection variable 𝑈1 = 𝑢1/𝑢1
∗ = 𝑢1/𝑙𝑠 , curvilinear extensional axis 𝑍𝑠 = 𝑧𝑠/𝑙𝑠  and extension 

variable 𝑈3 = 𝑢3/𝑢1
∗, appendage curvature 𝛼̃𝑠, appendage stretch 𝜆̃𝑠, moment resultant 𝑀̃𝑒 = 𝑀𝑒/𝑀𝑒

∗ , 

normal force resultant 𝑁𝑒 = 𝑁𝑒/𝑁𝑒
∗ , shear force resultant 𝑉̃𝑒 = 𝑉𝑒/𝑉𝑒

∗ . First moment of body force 

distribution per unit mass 𝑩𝑏
1 = (𝑏𝑏

1
𝑥
/(
𝑏𝑥
1∗𝑙𝑠

2

𝑚
), 𝑏𝑏

1
𝑧
/(
𝑏𝑧
1∗𝑙𝑠

2

𝑚
)), first moment of contact force distribution 

per unit mass 𝑩𝑐
1 = (𝑏𝑐

1
𝑥
/𝑏𝑥
1∗, 𝑏𝑐

1
𝑧
/𝑏𝑧
1∗), body force distribution per unit mass 𝑩𝑏 = (𝑏𝑏𝑥/(

𝑏𝑥
∗𝑙𝑠
2

𝑚
) , 𝑏𝑏𝑧/

(
𝑏𝑧
∗𝑙𝑠
2

𝑚
)) , contact force distribution per unit mass 𝑩𝑐 = (𝑏𝑐𝑥/𝑏𝑥

∗  , 𝑏𝑐𝑧/𝑏𝑧
∗) . Fluidic domain spatial 

coordinates (𝑋𝑓 , 𝑌𝑓 , 𝑍𝑓) = (𝑥𝑓/𝑙, 𝑦𝑓/ℎ𝑏 , 𝑧𝑓/ℎ𝑏) , viscous-elastic time 𝑇 = 𝑡/𝑡𝑓
∗ , fluid velocity 

(𝑈, 𝑉,𝑊) = (𝑢/𝑢∗, 𝑣/𝑣∗, 𝑤/𝑤∗) , fluid field pressure 𝑃 = 𝑝/𝑝∗ = 𝑝/𝐸 , bladder effective fluid 

pressure for slope generation 𝑃′ = 𝑝′/𝐸, bladder effective fluid pressure for extension generation 𝑃̅ =

𝑝̅/𝐸, volume flow rate in fluidic cross section 𝑄 = 𝑞/(𝑢∗𝑎0
∗), bladder permeability 𝑄1

𝑏 = 𝑞1
𝑏/𝐶̃𝑏𝑟𝑒𝑓𝑓

4  

and connective tubes' permeability 𝑄1
𝑐 = 𝑞1

𝑐/𝐶̃𝑐𝑟𝑒𝑓𝑓
4 , where 𝑟𝑒𝑓𝑓 and 𝐶̃𝑖~4𝜋 are respective effective 

scale and dimensionless constant related to the configuration of the flow-path i.e. shape of the cross-
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section, and 𝑞1
𝑖  (𝑖 = 𝑐, 𝑏) is defined by the relation  𝑞 = −((1/𝜇)𝜕𝑝/𝜕𝑥𝑓)𝑞1

𝑖 . Fluidic cross section area 

is defined 𝑎(𝑥𝑓 , 𝑝, 𝑁𝑒 , 𝑀𝑒) = 𝑎0(𝑥𝑓) + 𝑎𝑝1(𝑝, 𝑥𝑓) + 𝑎𝑁1(𝑁𝑒 , 𝑥𝑓) + 𝑎𝑀1(𝑀𝑒 , 𝑥𝑓)  and is normalized 

though 𝑎0
∗ = 𝜋𝑟𝑐

2  and 𝑎1
∗ = (𝜕𝑎1/𝜕𝑝)𝑝

∗  such that it reads 𝐴(𝑋𝑓, 𝑃, 𝑁𝑒 , 𝑀𝑒) = 𝐴0(𝑋𝑓) +

𝐴𝑝1(𝑃, 𝑋𝑓)𝜎𝑝 + 𝐴𝑁1(𝑁𝑒 , 𝑋𝑓)𝜎𝑝 + 𝐴𝑀1(𝑀𝑒 , 𝑋𝑓)𝜎𝑝 where 𝜎𝑝 = 𝑎1
∗/𝑎0

∗ . The slope introduced by a 

single bladder resulting from fluidic pressure and external traction are 𝛼̃𝑝 = 𝛼𝑝/𝛼𝑝
∗  and 𝛼̃𝑒 = 𝛼𝑒/𝛼𝑒

∗ 

respectively, extension introduced by a single bladder resulting from fluidic pressure and external 

traction are 𝜆̃𝑝 = 𝜆𝑝/𝜆𝑝
∗  and 𝜆̃𝑒 = 𝜆𝑒/𝜆𝑒

∗  respectively, non-dimensional squared gyration radius is 

𝑌11 = 𝑦11/𝑦11∗ = ((𝜌𝑠/𝑚)𝐼𝑓𝑖)/𝑙𝑠
2  and last bladder density along appendage length Φ = 𝜙/𝜙∗ =

𝜙/((𝑛/2)/𝑙𝑠). 

B.3. Analysis 

B.3.1. Fluidic Field Governing Equations 
Substituting the normalized variables into (1.1) and (B.4) yields in leading order, 

 
𝜕𝑃

𝜕𝑋𝑓
~
𝜕2𝑈

𝜕𝑌𝑓
2 +

𝜕2𝑈

𝜕𝑍𝑓
2 ,

𝜕𝑃

𝜕𝑌𝑓
~0,

𝜕𝑃

𝜕𝑍𝑓
~0, (B.8) 

 
𝜕𝑈

𝜕𝑋𝑓
+
𝜕𝑉

𝜕𝑌𝑓
+
𝜕𝑊

𝜕𝑍𝑓
~0, (B.9) 

where 2𝑟𝑐/𝑙 ~𝑣
∗ 𝑢∗⁄ = 𝜀1 ≪ 1 and 𝑢∗ = 𝑝∗𝜀1

2𝑙 𝜇⁄ . Integrating (B.9) over the fluidic domain cross-

section in the 𝑌𝑓 − 𝑍𝑓 plane and applying Gauss theorem yields, 

 
𝜕𝑄 
𝜕𝑋𝑓

+
ℎ

𝑡𝑓
∗𝑣∗

𝜕𝐴 
𝜕𝑇

= 0. (B.10) 

We define 𝑄1 (𝐴(𝑋𝑓 , 𝑃)) as the normalized volume flow rate calculated by the solution of the 

Possion equation (B.8) for 𝜕𝑃/𝜕𝑋𝑓 = −1 with no-slip boundary condition set at the wall, (𝑈, 𝑉,𝑊) =

𝑽𝑤𝑎𝑙𝑙. From linearity, 𝑄 can be obtained via  𝑄1 as 

 𝑄 = −
𝜕𝑃

𝜕𝑋𝑓
𝑄1 (𝐴(𝑋𝑓 , 𝑃)) . (B.11) 

From order-of-magnitude analysis we obtain 

 𝑞1
𝑖∗ = 𝐶̃𝑖  𝑟𝑒𝑓𝑓

4  , 𝑖 = 𝑐, 𝑏 (B.12) 

where 𝑟𝑒𝑓𝑓 and 𝐶̃𝑖~4𝜋 are respectively the effective scale and dimensionless constant related to the 

configuration of the flow-path. Taking the derivative of 𝐴(𝑋𝑓 , 𝑃, 𝑁𝑒 , 𝑀𝑒) = 𝐴0(𝑋𝑓) + 𝐴𝑝1(𝑃, 𝑋𝑓)𝜎𝑝 +

𝐴𝑁1(𝑁𝑒 , 𝑋𝑓)𝜎𝑝 + 𝐴𝑀1(𝑀𝑒 , 𝑋𝑓)𝜎𝑝 with regard to 𝑇 and substituting (B.11) into (B.10) we obtain, 
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−(
𝜕2𝑃

𝜕𝑋𝑓
2 ⋅ 𝑄1 (𝐴(𝑋𝑓 , 𝑃)) +

𝜕𝑃

𝜕𝑋𝑓
⋅ (
𝜕𝑄1
𝜕𝑋𝑓

))

+ (
𝜕𝐴𝑝1

(𝑃, 𝛩)

𝜕𝑃

𝜕𝑃

𝜕𝑇
+ R(𝑋𝑓)

𝜕𝐴𝑀1(𝑀̃e, 𝛩)

𝜕𝑀̃𝑒

𝜕𝑀̃𝑒(𝛩, 𝑇)

𝜕𝑇

+ |(R(𝑋𝑓))|
𝜕𝐴𝑁1(𝑁̃e, 𝛩)

𝜕𝑁̃𝑒

𝜕𝑁̃𝑒(𝛩, 𝑇)

𝜕𝑇
) = 0. 

(B.13) 

The resulting non-linear diffusion equation represents the balance between the change in axial 

flux to the change of cross section area over time due to fluidic pressure, solid domain section moment 

resultant and normal force resultant. We define 𝑅(𝑋𝑓) = 1 and 𝑅(𝑋𝑓) = −1 discretely to indicate 

bladder position at the upper or lower row respectively. 𝜕𝐴𝑀1/𝜕𝑀̃𝑒  represents the change in cross 

section due to section moment resultant and 𝜕𝐴𝑁1/𝜕𝑁̃𝑒 for the change in cross section due to section 

normal force resultant. From order-of-magnitude analysis of (B.13) we obtain the viscous-elastic time 

scale 𝑡𝑓
∗ as,   

 𝑡𝑓
∗ =

𝜎𝑟𝜇

𝑝∗𝜀1
2 =

𝑎1
∗𝜇

𝑎0
∗𝑝∗𝜀1

2 . (B.14) 

For the case of small local strains of the fluidic cross section due to pressure, and for any bladder 

geometry, a proportional relation between 𝐴1  and 𝑃  is upheld, and the viscous elastic time scale 

becomes 𝑡𝑓
∗ = 𝜇(𝜕𝑎1 𝜕𝑝⁄ )|𝑝=𝑝0 𝑎0

∗𝜀1
2⁄ . This proportional relation of 𝜕𝑎𝑝1/𝜕𝑝 is supported over a wide 

range of pressures as seen in the experimental derivation of system parameters, see SI Appendix C.2 

Fig. C.1. 

To complete the fluid field model, Equation (B.13) requires us to define two boundary 

conditions and one initial condition. At 𝑋𝑓 = 0 a Diriclet condition is set representing the pressure input 

introduced by the syringe pump, 

 

𝑃(0, 𝑇) = 𝑃max − 𝛥𝑃𝑚𝑎𝑥/ (1 + 𝑒
(−2𝜅(𝑇−0.5/𝑡𝑓

∗))
)

+ 𝛥𝑃𝑚𝑎𝑥/(1 + 𝑒
(−2𝜅(𝑇−4/𝑡𝑓

∗))
) , 

(B.15) 

a Neumann condition at 𝑋𝑓 = 1 representing the last bladder being sealed, 

 
𝜕𝑃(𝑋𝑓 , 𝑇)

𝜕𝑋𝑓
|
𝑋𝑓=1

= 0 , (B.16) 

and finally, with the fluid field starting from rest, we set the systems initial condition to  

 𝑃(𝑋𝑓 , 0) = 0 . (B.17) 
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FIG. B.2. Illustration of Sign convention using right-handed system. (a) Lab-frame and 

positive moment defined. (b)  Illustration of section internal/resultant forces and moment 𝑉𝑒 , 𝑁𝑒 , 𝑀𝑒. 

Bladder change in cross section 𝑎1  presented in response to section resultants: (c) 𝑁𝑒 and (d) 𝑀𝑒. 

Bladder section initial area 𝑎0, is denoted in dashed lines, gray areas indicate induced change in cross 

section 𝑎1 due to respective resultant. 

B.3.2. Constitutive Laws for a Fluid-Driven Soft Appendage 
We now turn formulate the solid field Cosserat rod continuum constitutive laws. Our intrinsic 

kinematic variables  𝜆𝑠[1] = 𝜆𝑒 + 𝜆𝑝 stands for the total stretch measure and 𝛼𝑠[1/𝑚] = 𝛼𝑒 + 𝛼𝑝 for 

the total curvature measure of the reference curve. The subscript 𝑒 and 𝑝 represent the source of the 

measure being from traction i.e. external forces applied to the surface, or pressure respectively. We 

define in dimensional form, 

Inrinsic Kinematic Variables 

 𝜆𝑠 =
𝑑 
𝑠
33
1/2

𝐷33
1/2

 
𝑠

 , (B.18) 

 𝛼𝑠
 =

𝒅 
𝑠
1,3⋅ 𝒅 

𝑠
3

𝑑 
𝑠
33
1/2

𝐷 
𝑠
33
1/2
 , (B.19) 

where 𝑑33 = 𝒅3 ⋅ 𝒅3 defines the metric's of 𝒅3 vector at present configuration i.e. spatial frame,  and 

𝐷33 = 𝑫3 ⋅ 𝑫3 defining the metric's of 𝒅3 vector at 𝑡 = 0 configuration i.e. material frame. For a beam 

(straight rod)  at relaxed state oriented along the lab frame results in (𝑫1, 𝑫2, 𝑫3) = (𝒆1, 𝒆2, 𝒆3), thus 

we can formulate 

 𝐷33 = 𝑫3 ⋅ 𝑫3 = 𝒆3 ⋅ 𝒆3 = (0,0,1) ⋅ (0,0,1) = 1. (B.20) 

The pressure induced measures for stretch and curvature are defined 

 𝜆𝑝 =
𝑝̅

𝐸

𝜕𝜆𝑝
𝜕(𝑝̅/𝐸)

 , (B.21) 

 𝛼𝑝
 = −

𝑝′

𝐸
⋅
𝜕𝛼𝑝

𝜕(𝑝′/𝐸)
  (B.22) 
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where the effective pressure for slope and extension generation are respectively  𝑝′ = (𝑝𝑑 − 𝑝𝑢) and 

𝑝̅ = (𝑝𝑑 + 𝑝𝑢).  𝑝𝑢 and 𝑝𝑑 are the fluidic pressures at the upper and lower bladders, 𝜕𝜆𝑝/𝜕(𝑝̅/𝐸) is 

the measure of stretch per cross section per normalized pressure sum and 𝜕𝛼𝑝/𝜕(𝑝/𝐸) is the measure 

of curvature per cross section per normalized pressure difference. Formulating the respective non-

dimensional form yields  

  
𝜕𝛼̃𝑝

𝜕(𝑝′/𝐸)
≈ Φ

𝜕𝜓

𝜕(𝑝′/𝐸)
 , (B.23) 

 
𝜕𝜆̃𝑝

𝜕(𝑝̅/𝐸)
= Φ

𝜕𝜁

𝜕(𝑝̅/𝐸)
  (B.24) 

where 𝜕𝜓/𝜕(𝑝′/𝐸) represents the change in appendage slope per cross section per normalized 

pressure difference and 𝜕𝜁/𝜕(𝑝̅/𝐸) is the non-dimensional change in length per cross section per 

normalized pressure sum. The later 𝜕𝜁/𝜕(𝑝̅/𝐸) may now be formulated in dimensional in form  

 
𝜕𝜁

𝜕(𝑝̅/𝐸)
= 𝜙∗

𝜕𝜁

𝜕(𝑝̅/𝐸)
  (B.25) 

where 𝜕𝜁/𝜕(𝑝̅/𝐸) is the dimensional change in length per cross section per normalized pressure sum. 

Substituting our normalized variables into equations (B.1), (B.2) and (B.18) - (B.22) 

respectively, we obtain our directors and kinematic variables in non-dimensional form, 

 𝒅̃1 = ((
𝑙𝑠
𝑢1
∗) +

𝜕𝑈3
𝜕𝛩

,−
𝜕𝑈1
𝜕𝛩
) , (B.26) 

 𝒅̃3 = (
𝜕𝑈1
𝜕𝛩 

, (
𝑙𝑠
𝑢1
∗) +

𝜕𝑈3
𝜕𝛩

) (B.27) 

and, 

 

𝜆̃𝑒 =
1

𝜆𝑒
∗

𝑑̃ 
𝑠
33
1/2

𝐷̃33
1/2

 
𝑠
⏟  
𝜆̃𝑠

−
𝜆𝑝
∗

𝜆𝑒
∗ 𝑃̅(𝑋𝑓)

𝜕𝜆̃𝑝
𝜕(𝑝̅/𝐸)⏟          

𝜆̃𝑝

 , 

 

(B.28) 

 
𝛼̃𝑒 =

1

𝑙𝑠𝛼𝑒
∗

𝑑̃1𝑥 ,3 𝑑̃3𝑥 + 𝑑̃1𝑧,3 𝑑̃3𝑧

𝑑̃ 
𝑠
33
1/2

𝐷̃ 
𝑠
33
1/2

⏟            
𝛼̃𝑠

+
𝛼𝑝
∗

𝛼𝑒
∗ 𝑃′(𝑋𝑓)

𝜕𝛼̃𝑝

𝜕(𝑝′/𝐸)⏟            
𝛼̃𝑝

 . 
(B.29) 

From Order-of-magnitude analysis of we determine the characteristic scale for the directors 

𝑑1
∗~𝑢1

∗/𝑙𝑠 and 𝑑3
∗ = 𝑢1

∗/𝑙𝑠, as well as for the measure of curvature  𝛼𝑠
∗~𝛼𝑒

∗~
1

𝑙𝑠
 and stretch 𝜆𝑠

∗~𝜆𝑒
∗~1. 

Constitutive Equations, Force and Moment Resultants 

The constitutive equations for normal force resultant 𝑁𝑒, shear force resultant 𝑉𝑒 and bending 

moment resultant 𝑀𝑒 are now formulated in dimensional form, 

 𝑁𝑒 = 𝐸ℎ𝑠𝑤𝑠𝑓𝑒(𝜆𝑒 − 1) , (B.30) 

 𝑀𝑒 = 𝐸
𝑤𝑠ℎ𝑠

3

12
𝑓𝑖 ⋅ 𝛼𝑒 , (B.31) 

 𝑉𝑒 = − 𝑑 
𝑠
33
−1/2

𝑀𝑒,3 . (B.32) 

Substituting the normalized variables (B.30)-(B.32) become 

 𝑁̃𝑒 = (𝜆̃𝑒 −
1

𝜆𝑒
∗) ,   (B.33) 

 𝑀̃𝑒 = 𝛼̃𝑒 ,   (B.34) 
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 𝑉̃𝑒 = −
1

𝑑̃33
1/2

 
𝑠

 
𝜕𝑀̃𝑒
𝜕𝛩

 . (B.35) 

With order-of-magnitude analysis respectively yielding, 

 𝑁𝑒
∗~𝐸ℎ𝑠𝑤𝑠𝑓𝑒𝜆𝑒

∗  , (B.36) 

 𝑀𝑒
∗~𝐸

𝑤𝑠ℎ𝑠
3

12
𝑓𝑖
1

𝑙𝑠
 , (B.37) 

 𝑉𝑒
∗~𝐸

𝑤𝑠ℎ𝑠
3

12
𝑓𝑖
1

𝑙𝑠
2 . (B.38) 

B.3.3. Serret-Ferent Curvilinear Coordinates 
The Serret-Ferent triad associated with the current position along the reference curve is 

characterized by the unit tangent 𝒆 
𝒔
𝑡 along beam length, the unit normal 𝒆 

𝒔
𝑛 and unit binormal 𝒆 

𝒔
𝜏, 

see illustrated in Fig. B.1. In dimensional form,   

 𝐞𝐭 
s =

𝒅 
𝑠
3(𝜃, 𝑡)

𝑑 
𝑠
33
1/2

 , (B.39) 

 𝐞𝐧 
s = −

( 𝒅 
𝑠
1,3⋅ 𝒅 

𝑠
3) 𝒅 
𝑠
1

𝛼𝑠𝜆𝑠 𝐷33 
𝑠

 . (B.40) 

Substituting the normalized variables yields,  

 𝑬𝒕 
𝑠 =

(𝑑̃3𝑥, 𝑑̃3𝑧)

𝑑̃33
1/2

 
𝑠

 , (B.41) 

 𝑬𝒏 
𝑠 = −

(𝑑̃1𝑥 , 𝑑̃1𝑧)

𝑑̃33

1
2

 
𝑠

 . (B.42) 

B.3.4. Solid Field Governing Equations 
For the two way coupled solid field governing equations, the intrinsic Cosserat rod formulation 

is used with both the deflection component 𝑈1 in the 𝒆1 lab frame direction and tangential deformation 

component 𝑈3 in the 𝒆3 direction included. Substituting (B.6), (B.7), (B.18) - (B.42) in conjunction 

with normalized variables and applying order of magnitude analysis onto (B.5) we obtain two scalar 

equation; one in the 𝑋𝑠 direction 

 

𝑋𝑠: 𝛱1 ( 
𝜕2𝑈1
𝜕𝑇2

) = 𝐵𝑥 + [𝛱2  
𝜕𝑁̃𝑒
𝜕𝛩

− 𝛱3𝛼̃𝑒𝑉̃𝑒] 𝐸𝑡𝑥  
𝑠 + [𝛱4  

𝜕𝑉̃𝑒
𝜕𝛩

+ 𝛱5𝛼̃𝑒𝑁̃𝑒] 𝐸𝑛𝑥 
𝑠

+
𝜕

𝜕𝛩
[ 
1

𝑑̃33
 
((𝛱6𝐵𝑥

1 − 𝛱7𝑌
11
𝜕2𝑑̃1𝑥
𝜕𝑇2

) 𝑑̃3𝑥

+ (𝛱8𝐵𝑧
1 − 𝛱9𝑌

11
𝜕2𝑑̃1𝑧

𝜕𝑇 
2 ) 𝑑̃3𝑧) 𝑑̃1𝑥  ]  

(B.43) 

and in the 𝑍𝑠 direction 
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𝑍𝑠: 𝛱1 ( 
𝜕2𝑈3
𝜕𝑇2

) = 𝐵𝑧 + [𝛱2  
𝜕𝑁̃𝑒
𝜕𝛩

− 𝛱3𝛼̃𝑒𝑉̃𝑒] 𝐸𝑡𝑧 
𝑠 + [ 𝛱4

𝜕𝑉̃𝑒
𝜕𝛩

+ 𝛱5𝛼̃𝑒𝑁̃𝑒] 𝐸𝑛𝑧 
𝑠

+
𝜕

𝜕𝛩
[ 
1

𝑑̃33
 
((𝛱6𝐵𝑥

1 − 𝛱7𝑌
11
𝜕2𝑑̃1𝑥
𝜕𝑇2

) 𝑑̃3𝑥

+ (𝛱8𝐵𝑧
1 − 𝛱9𝑌

11
𝜕2𝑑̃1𝑧

𝜕𝑇 
2 ) 𝑑̃3𝑧) 𝑑̃1𝑧 ]  

(B.44) 

where both are scaled by non-dimensional numbers 𝛱1 = (𝑡𝑠
∗/𝑡𝑓

∗ )
2
, 𝛱2 = 𝑁𝑒

∗/(𝑙𝑠𝑚𝑏
∗) , 𝛱3 =

(𝛼𝑒
∗𝑉𝑒

∗)/(𝑚𝑏∗) , 𝛱4 = 𝑉𝑒
∗/(𝑙𝑠𝑚𝑏

∗) , 𝛱5 = (𝛼𝑒
∗𝑁𝑒

∗)/(𝑚𝑏∗) , 𝛱6 = 𝛱8 = (𝑑1
∗𝑏1∗𝑑3

∗)/(𝑙𝑠𝑑33
∗ 𝑏∗) , 𝛱7 =

𝛱9 = ((𝑑1
∗𝑦11∗𝑑3

∗)/(𝑙𝑠
2 𝑑33

∗ ))(𝑡𝑠
∗/𝑡𝑓

∗)
2
. These can then be reduced to read, 

 

𝜏2 (
𝜕2𝑈1/𝜕𝑇

2
 

𝜕2𝑈3/𝜕𝑇
2
)

⏟          
𝐿𝑖𝑛𝑒𝑎𝑟 𝐼𝑛𝑒𝑟𝑡𝑖𝑎

= (
𝐵𝑥
𝐵𝑧
)

⏟
𝑇𝑟𝑎𝑐𝑡𝑖𝑜𝑛 

+ [𝜂 
𝜕𝑁̃𝑒
𝜕𝛩

− 𝛼̃𝑒𝑉̃𝑒] (
𝐸𝑡𝑥
𝐸𝑡𝑧
)

⏟              
𝐶𝑢𝑟𝑣𝑒𝑙𝑖𝑛𝑒𝑎𝑟

𝑇𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙 𝑓𝑜𝑟𝑐𝑒 

+ [
𝜕𝑉̃𝑒
𝜕𝛩

+ 𝜂 𝛼̃𝑒𝑁̃𝑒] (
𝐸𝑛𝑥
𝐸𝑛𝑧

)
⏟              

𝐶𝑢𝑟𝑣𝑒𝑙𝑖𝑛𝑒𝑎𝑟
𝑁𝑜𝑟𝑚𝑎𝑙 𝑓𝑜𝑟𝑐𝑒

+
𝜕

𝜕𝛩

[
 
 
 
 

 
1

𝑑̃33
 

(

 
 
(𝐵𝑥

1 − Y11𝜏2
𝜕2𝑑̃1𝑥
𝜕𝑇2

) 𝑑̃3𝑥

+(𝐵𝑧
1 − Y11𝜏2

𝜕2𝑑̃1𝑧

𝜕𝑇 
2 ) 𝑑̃3𝑧

)

 
 
(
𝑑̃1𝑥
𝑑̃1𝑧
) 

]
 
 
 
 

⏟                              
𝑅𝑜𝑡𝑎𝑟𝑦 𝐼𝑛𝑒𝑟𝑖𝑎

 . 

(B.45) 

Where 𝑉̃𝑒  and 𝑁̃𝑒  are the non-dimensional shear and normal force resultants, 𝛩  is the non-

dimensional curvilinear length coordinate along the appendage reference curve. We define our 

kinematic variable for curvature 𝛼̃𝑒, structure reference curve tangent 𝑬𝒕 = (𝑑̃3𝑥 , 𝑑̃3𝑧)/𝑑̃33
1/2

and normal 

𝑬𝒏 = −(𝑑̃1𝑥 , 𝑑̃1𝑧)/𝑑̃33
1/2

 components with the non-dimensional directors being 𝒅̃1 = (1 + 𝜕𝑈3/

𝜕𝛩,−𝜕𝑈1/𝜕𝛩)  and 𝒅̃3 = (𝜕𝑈1/𝜕𝛩, 1 + 𝜕𝑈3/𝜕𝛩)  and 𝑑̃33 = 𝒅̃3 ⋅ 𝒅̃3 . Last we define the non-

dimensional distributed traction force per unit mass 𝑩 = (𝑏𝑥/(𝑉𝑒
∗/𝑙𝑠𝑚), 𝑏𝑧/(𝑉𝑒

∗/𝑙𝑠𝑚)) and moment 

per unit mass vectors 𝑩𝟏 = (𝑏𝑥
1/(𝑉𝑒

∗/𝑚), 𝑏𝑧
1/(𝑉𝑒

∗/𝑚))  are respectively. Three nondimensional 

numbers determining the dynamic regime of the structure. The time scale ratio 𝜏 = 𝑡𝑠
∗/𝑡𝑓

∗ , where 

𝑡𝑠
∗~√𝑚𝑙𝑠

4/𝐸𝐼𝑓𝑖  is the elastic-inertial time-scale and 𝑡𝑓
∗~𝜇(𝜕𝑎1 𝜕𝑝⁄ )|𝑝=𝑝0 𝑎0

∗𝜀1
2⁄  the viscous-elastic 

time scale, the normalized squared radius of gyration Y11 = 𝐼𝑓𝑖/(𝑤𝑠ℎ𝑠𝑓𝑚𝑙𝑠
2) and the force scale ratio 

determining the balance between shear and normal forces 𝜂 = 𝑁𝑒
∗/𝑉𝑒

∗ = 𝐸ℎ𝑠𝑤𝑠𝑓𝑒/(𝐸𝑤𝑠ℎ𝑠
3𝑓𝑖/(12𝑙𝑠

2)). 
Our force and first moment distribution per unit mass terms are also defined in non-dimensional form, 

and the respectively defined, 

 𝑩 = (
𝜌𝑠𝑙𝑠

2

𝑚
𝐵𝑏𝑥 + 𝐵𝑐𝑥   ,   

𝜌𝑠𝑙𝑠
2

𝑚
 (
𝑏𝑧
∗

𝑏𝑥
∗)𝐵𝑏𝑧 + (

𝑏𝑧
∗

𝑏𝑥
∗)𝐵𝑐𝑧) , (B.46) 

 𝑩1 = (
𝜌𝑠𝑙𝑠

2

𝑚 
𝐵𝑏
1
𝑥
+𝐵𝑐

1
𝑥
 ,   
𝜌𝑠𝑙𝑠

2

𝑚 
 ( 
𝑏𝑧
1∗

𝑏𝑥
1∗
)𝐵𝑏

1
𝑧
+ ( 

𝑏𝑧
1∗

𝑏𝑥
1∗
)𝐵𝑐

1
𝑧) . (B.47) 

Order of magnitude analysis of 𝑩,𝑩1 yields 𝑏𝑥
∗~𝑉𝑒

∗/𝑙𝑠,  𝑏
∗~𝑏𝑥

∗/𝑚,  𝑏𝑥
1∗~𝑏𝑥

∗𝑙𝑠,  𝑏
1∗~𝑏𝑥

1∗/𝑚,  

𝑏𝑧
∗~𝑁𝑒

∗/𝑙𝑠,  𝑏𝑧
1∗~𝑏𝑧

∗𝑙𝑠, 𝑦
11∗~𝑙𝑠

2. Determining the relevant dynamic regime of the structure we define 

the time scale ratio 
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𝑡𝑠
∗

𝑡𝑓
∗ =

𝑎0
∗𝜀1
2√𝑚𝑢1

∗𝑙𝑠
3/𝐸𝐼𝑓𝑖

𝜇(𝜕𝑎1 𝜕𝑝⁄ )|𝑝=𝑝0
   (B.48) 

where 𝑡𝑠
∗~√𝑚𝑢1

∗𝑙𝑠
3/𝐸𝐼𝑓𝑖 is the elastic-inertial time-scale and 𝑡𝑓

∗ = 𝜇(𝜕𝑎1 𝜕𝑝⁄ )|𝑝=𝑝0 𝑎0
∗𝜀1
2⁄  the viscous-

elastic time scale.  

 

For a well-posed problem, Equation (B.45) requires six boundary conditions and four initial 

conditions. The problem presented in this paper is a cantilever beam. In a similar manner to the classic 

Euler-Bernoulli beam theory, where boundary conditions are applied over the overall structure quantity 

of a reference curve, we set the following geometric conditions. 

 𝑈1(0, 𝑇) = 0  (B.49) 

or slope 

 (
𝜕𝑈1
𝜕𝛩
)|
(0,𝑇)

= 0 , (B.50) 

and for 𝑈3 extension, 

 𝑈3(0, 𝑇) = 0.  (B.51) 

Dynamic conditions on the other hand, relate to additional displacement due to external 

moments and normal, shear forces at the boundary. Using (B.29), (B.34) and (B.35), Dynamic 

conditions are thus applied for moment 

 𝑀̃𝑒|(1,𝑇) = 0 , (B.52) 

shear force  

 𝑉̃𝑒|(1,𝑇) = 0 , (B.53) 

and respectively for normal forces over 𝑈3 using (B.33) and (B.28) 

 𝑁̃𝑒|(1,𝑇) = 0 . (B.54) 

 

Last, initial conditions are directly applied over 𝑈1 and 𝑈3 setting our appendage to start from 

rest, 

 𝑈1(𝛩, 0) = 0 (B.55) 

and 

 𝑈3(𝛩, 0) = 0 . (B.56) 

As well as over the initial time derivative, 

 (
𝜕𝑈1
𝜕𝑇
)|
(𝛩,0)

= 0  (B.57) 

and 

  (
𝜕𝑈3
𝜕𝑇
)|
(𝛩,0)

= 0 . (B.58) 

See Matia & Gat [3] for a more detailed generalized approach for any set of initial and boundary 

conditions. 

B.3.5. Coordinate Mapping Between Solid and Fluid Domains 
An essential step in formulating the predictive model is the two-way coordinate mapping of the 

fluid and solid fields. We thus correlate local pressure gradients associated with the deformation of the 

structure onto the fluid field to determine deformation-driven flows, and, conversely, we can determine 

fluid-driven deformation by mapping the distribution of fluid pressure within the structure. Whereas a 

generalized algorithm for realizing any arbitrary configuration is found in Matia & Gat [3]; In this paper, 
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we present a simplified approach for configurations with a single continuous array of bladders and 

tubing across the entire solid field. In Fig. B.3. we present a schematic setup of parallel (panel a) and 

cross-over (panel b) serpentine configurations discussed in this paper. 

We define a methodology for bladder index 𝑗 from left to right, and separately for top and 

bottom by 𝑅 = 1 and 𝑅 = −1 respectively see Fig B.3a. Note: bladders in the main text are referred to 

as 'right' and 'left' due robot orientation; these are respective to 'top' and 'bottom' in this appendix. 

 
FIG. B.3.  Schematic illustration of the appendage section showing connectivity 

configurations. (a) Parallel serpentine configuration. (b) Crossover serpentine configuration. 

Bladders' index 𝑗 in black. Scale bars indicate the 𝛩 coordinate used for bladder position in the  𝛩 −

𝑋𝑓 coordinate mapping – bladder start coordinate (upper bar) and 𝑋𝑓 − 𝛩  coordinate mapping – 

bladder mid coordinate (lower bar).  

𝜣− 𝑿𝒇 Coordinate Mapping, 𝑿𝒇(𝜣) 

A mapping of fluid pressure onto the solid field is essential in order to determine the change in stretch 

and curvature as a result of fluidic pressure gradients. This fluid-driven deformation is introduced by 

the coupled intrinsic kinematic variables (1.8)(B.28) and (1.9)(B.29), respectively. First, we set the x-

axis (𝛩 ⋅ 𝑅) ∈ [−1,1]. 𝛩 ∈ [0,1] represents the non-dimensional coordinate along appendage length; 

the positive or negative signs indicates mapping of the fluid pressure onto a top or bottom bladder 

respectively, see Fig. B.3. Next, we set the corresponding y-axis 𝑋𝑓 . We assign connective array 

parameters for: number of total bladders 𝑛 = 16[1] (i.e. for both top and bottom), number of connective 

tubes 𝑛𝑐 = 15[1], length of connective tubes 𝑙𝑐 = 0.04[𝑚], length of bladder 𝑙𝑏 = 0.018[𝑚]; we then 

calculate the total length of bladder-tube array for mapping purposes ℓ𝑡𝑜𝑡 = 𝑙𝑏𝑛 + 𝑙𝑐𝑛𝑐 . We define the 

size of a single bladder along the 𝛩 coordinate as the total non-dimensional length 𝛩 = 1 divided by 

the number of bladders in one row |(𝛩 ⋅ 𝑅)| = (1/(n/2)). Following, we set the first bladder x-axis 

coordinate Θ𝑖𝑛𝑖𝑡
1 = 0 and end coordinate Θ𝑒𝑛𝑑

1 = (1/(n/2)). Each consecutive bladder afterwards is 

given Θ𝑖𝑛𝑖𝑡
𝑗

= Θ𝑒𝑛𝑑
𝑗−1

+ 𝑜(1/(n/2)) and Θ𝑒𝑛𝑑
𝑗

= Θ𝑖𝑛𝑖𝑡
𝑗

+ (1/(n/2)).  

The y-axis is next to be defined. We define the non-dimensional bladder length  ℒ𝑏 = 𝑙𝑏/ℓ𝑡𝑜𝑡  and tube 

length ℒ𝑐 = 𝑙𝑐/ℓ𝑡𝑜𝑡, and construct the 𝑋𝑓 mapped position such that the solid field coordinate 𝛩 maps 

to the center of bladder length 𝑙𝑏. The first connecting bladder is set 𝑋𝑓
1 = ℒ𝑏/2; subsequent connected 
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bladders are added 𝑋𝑓
𝑗
= 𝑋𝑓

𝑗−1
+ ℒ𝑏 + ℒ𝑐  in the order of their connection i.e. at the cross over 

configuration Fig. B.3b the bladder connection order would be Ω𝑐 =

{1,2,3,−4,−5,−6,−7,−8,8,7,6,5,4,−3,−2,−1}. See Matia & Gat [3] for a more detailed generalized 

algorithm. The mapping detailed above generates a 𝒞0 continuous mapping function. In Fig. B.4 we 

plot the coordinate mappings' for parallel serpentine (panel a) and crossover serpentine (panel b). For 

detailed tabulated data used in the plots, see SI appendix B.4 Table B.1a, B.1b. 

 

 

 
FIG. B.4. Plot of coordinate mapping 𝜣− 𝑿𝒇  for configurations used in the article. (a) 

Parallel serpentine. (b) Crossover serpentine. 

𝑿𝒇 −𝜣 Coordinate Mapping, 𝜣(𝑿𝒇) 

Next, we turn to map the solid field deformation onto the fluidic pressure field. Equation (1.1) 

shows deformation as a source term for pressure generation by 𝜕𝑀̃𝑒(𝛩, 𝑇)/𝜕𝑇 and 𝜕𝑁̃𝑒(𝛩, 𝑇)/𝜕𝑇.  

Our objective is to map our resultants onto the fluid field in order to determine their contribution 

to it. We set the x-axis to represent the non-dimension length along the fluid domain 𝑋𝑓 ∈ [0,1]. As for 

the y-axis, we prescribe (𝛩 ⋅ 𝑅) ∈ [−1,1] coordinates corresponding to the solid field mid-bladder 

lengthwise position 𝛩 ∈ [0,1], multiplied by 𝑅 = 1 for the top bladder and 𝑅 = −1 for the bottom 

bladder. 

Following we set mapping. The first connected bladder is assigned an initial 𝑋𝑓,𝑖𝑛𝑖𝑡
1 = 0 and 

end value 𝑋𝑓,𝑒𝑛𝑑
1 = ℒ𝑏 at its respective (𝛩 ⋅ 𝑅) position. Each subsequent connected bladder is assigned 

an initial-value 𝑋𝑓,𝑖𝑛𝑖𝑡
𝑗

= 𝑋𝑓,𝑒𝑛𝑑
𝑗−1

+ ℒ𝑐 and an end value 𝑋𝑓,𝑒𝑛𝑑
𝑗

= 𝑋𝑓,𝑖𝑛𝑖𝑡
𝑗

+ ℒ𝑏 at respective solid field 

position (𝛩 ⋅ 𝑅). See Matia & Gat [3] for a more detailed generalized algorithm. The mapping detailed 

above generates a 𝒞0 continuous mapping function. In Fig. B.5 we present coordinate mappings' for the 

two configurations considered in this paper: Parallel serpentine (panel a), crossover serpentine (panel 

b). For detailed tabulated data used in the plots see SI appendix B.5  Table B.2a, B.2b. 
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FIG. B.5. Plot of coordinate mapping 𝑿𝒇 −𝜣 for three key configurations used in the article. 

(a) Parallel serpentine. (b) Crossover serpentine. 

B.3.6. Formulation of 𝑅(𝑋𝑓) 

The function 𝑅(𝑋𝑓) is a function used to identify the position of a given bladder in an upper or 

lower row.  𝑅 = 1 indicated an upper bladder and 𝑅 = −1 for lower bladder respectively. It is derived 

as a 𝒞0 continuous function from the coordinate mapping 𝑋𝑓 − 𝛩 as 

 𝑅(𝑋𝑓) = {

𝛩(𝑋𝑓) = 0 , 0

𝛩(𝑋𝑓) ≠ 0 ,
𝛩(𝑋𝑓)

|𝛩(𝑋𝑓)|

  } . (B.59) 

 

B.3.7. Formulation of 𝜕𝐴1/𝜕𝑁̃𝑒  , 𝜕𝐴1(𝑀̃e, 𝛩)/𝜕𝑀̃𝑒  , 𝜕𝐴1(𝑃, 𝛩)/𝜕𝑃 and 

𝑄1 (𝐴(𝑋𝑓 , 𝑃)) 

The functions 𝐴𝑁1(𝑁̃e, 𝛩)/𝜕𝑁̃𝑒 , 𝜕𝐴𝑀1(𝑀̃e, 𝛩)/𝜕𝑀̃𝑒 , 𝜕𝐴𝑝1
(𝑃, 𝛩)/𝜕𝑃 represent the change in 

cross section due to section internal resultants 𝑁̃𝑒 , 𝑀̃𝑒  and pressure 𝑃. The function 𝑄1 (𝐴(𝑋𝑓 , 𝑃)) 

stands for the fluidic cross section permeability. The abovementioned functions' value dependents on 

the fluidic cross section in question being that of a bladder or a connective tube. As such, their value is 

derived directly from the coordinate mapping 𝑋𝑓 − 𝛩  as a 𝒞0  continuous function differentiating 

between the parametric value referring to bladder or tube by setting,  

 𝛤𝐴(𝑋𝑓) =

{
 
 

 
 
𝜕𝛩(𝑋𝑓)

𝜕𝑋𝑓
= 0 , 1

𝜕𝛩(𝑋𝑓)

𝜕𝑋𝑓
≠ 0 , 0

  

}
 
 

 
 

 , (B.60) 
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 𝛤𝑄(𝑋𝑓) =

{
 
 

 
 
𝜕𝛩(𝑋𝑓)

𝜕𝑋𝑓
= 0 , 1

𝜕𝛩(𝑋𝑓)

𝜕𝑋𝑓
≠ 0 , 𝑄1

𝑐/𝑄1
𝑏

  

}
 
 

 
 

 , (B.61) 

with bladder permeability 𝑄1
𝑏 and connective tube's 𝑄1

𝑐 respective to 𝑋𝑓 position. We can now 

define the unsteady pressure term representing the change in cross section per unit pressure,  

 
𝜕𝐴𝑝1

(𝑃, 𝛩)

𝜕𝑃
= (𝜕𝐴𝑝1

/𝜕𝑃)|
𝑝∗
𝛤𝐴(𝑋𝑓)  , (B.62) 

and the feedback source terms from the solid field resultants for normal force 𝑁̃𝑒, and moment 

𝑀̃𝑒 coupling solid field deformation to flow.   

 
𝜕𝐴𝑁1(𝑁̃e, 𝛩)

𝜕𝑁̃𝑒
= (𝜕𝐴𝑁1/𝜕𝑁̃𝑒)|𝑁𝑒∗

𝛤𝐴(𝑋𝑓) , (B.63) 

 
𝜕𝐴𝑀1(𝑀̃e, 𝛩)

𝜕𝑀̃𝑒
= (𝜕𝐴𝑀1/𝜕𝑀̃𝑒)|𝑀𝑒∗

𝛤𝐴(𝑋𝑓) , (B.64) 

For the case of (B.62) - (B.64) the value for  𝜕𝛩(𝑋𝑓)/𝜕𝑋𝑓 ≠ 0 is set to zero, as connective tube 

segments do not change their cross section area due to force and moment resultants (being external to 

the appendage) nor do they do due to pressure being constant cross section elastic tubes. As such it is 

of note to mention that for the connective tubes the fluidic governing equation (B.13) degenerates to 

𝜕2𝑃/𝜕𝑋𝑓
2 = 0, lending to the understanding of their contribution to fluid domain pressure solution 

being a steady state linear pressure gradient proportionate to their length. 

And last, we define 𝑄1 as a function of 𝑋𝑓 as we progress from bladder to tube and vice versa 

along the fluidic domain. Calculating the physical value of 𝑞1
𝑐 and 𝑞1

𝑏, see section C.2, we then set our 

bladder-tube scaling argument for 𝑄1 using (B.12) separately for a tube 𝑄1
𝑐 = 𝑞1

𝑐/𝑞1
𝑐∗ and bladder 𝑄1

𝑏 =

𝑞1
𝑏/𝑞1

𝑏∗ and define  

 𝑄1 (𝐴(𝑋𝑓 , 𝑃)) = 𝑄1
𝑏𝛤𝑄(𝑋𝑓) , (B.65) 

such that we alternate between 𝑄1
𝑏 or 𝑄1

𝑐 respective to 𝑋𝑓 position. 
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B.4. Tabulated Data for 𝛩 → 𝑋𝑓 Coordinate Mapping 

 

 
TABLE. B.1. Tabulated data for 𝚯 → 𝐗𝐟 coordinate mapping used in figure B.4. (a) Parallel 

serpentine configuration. (b) Crossover serpentine configuration.. 
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B.5. Tabulated Data for 𝑋𝑓 → 𝛩 Coordinate Mapping 

 

 
 

TABLE. B.2. Tabulated data for 𝐗𝐟 → 𝚯 coordinate mapping used in figure B.5. (a) Parallel 

serpentine configuration. (b) Crossover serpentine configuration. 
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Appendix C 

This appendix describes the setups used to experimentally measure six model parameters 

related to internal external pressure, forces, volume, and elastic modulus. Unless otherwise noted all 

experiments were replicated 10 times with a single 16-bladder actuator mounted at the top, which is 

also where the pressure inlet/outlet is located. We manually inflated a syringe filled with air. We read 

the change in the volume of air on the syringe, and recorded pressure using a 20 − 400[𝑘𝑃𝑎] absolute 

pressure sensor 1040_0 from Phidgets. Four markers were placed on alternate links on the actuator, 

such that the actuator pose in steady state could be automatically extracted from side-view photos using 

Image. 

C.1. Inlet pressure versus Volume 
To measure the change in volume given an inlet pressure, we manually inflated a 16-bladder 

actuator with a crossed configuration, while recording the amount of displaced volume in the syringe 

and the steady-state pressure (Fig. C.1(A)). Starting at ambient pressure, we added a volume of air in 

the range of −60[𝑚𝐿] to +40[𝑚𝐿], and repeated each trial 10 times. This range corresponds to that 

used in the final hexapod robot described in the main article. The data is shown in Fig. C.1(B); note that 

volume added is reported per bladder in the actuator. We used the slope of this curve to inform the 

parameter 𝜕𝑎1/𝜕𝑃. 

C.2. Differential Inlet Pressure versus Actuator Curvature 
To measure the actuator curvature versus the inlet pressure, we connected the 8 bladders on 

either side to two separate syringes which was inflated opposite of each other (Fig. C.1(C)). We then 

computed the angle between the last two markers, as seen in Fig. C.1(D). We used the slope of this 

curve to inform the parameter  𝜕𝜓/𝜕(𝑝′/𝐸), where 𝐸 =  1.8[𝑀𝑃𝑎]. 

 

 

 

FIG. C.1.  (A) Experimental setup to determine pressure versus volume. (B) Data related to 

(A): mean and standard deviation shown in blue; best fit line in red. (C) Photo of experimental setup, 

showing the actuator bending towards the side which has negative pressure relative to the other. The 

overlay of red points show where the four markers were tracked. (D) Data related to (C). The curvature 

at the tip of the actuator is approximated as the angle of the line through the third to the fourth marker 

with respect to vertical. 
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C.3. Inlet Pressure versus Actuator Elongation 
To measure the bladder elongation versus applied pressure we manually inflated a 16-bladder 

actuator in a crossed configuration. The outcome is shown in Fig. C.2(A). The properties of this curve 

informs the parameter 𝜕𝜁/𝜕(𝑝̅/𝐸), where 𝐸 =  1.8[𝑀𝑃𝑎]. 

C.4. Normal Force versus Actuator Extension and Compression 
To measure actuator extension under strain, we mounted a cup to the bottom of a 16-bladder 

actuator connected in a straight configuration and added weight in the range of 0 to 300[𝑔] with 20[𝑔] 

intervals. A weight of 300[𝑔] roughly correspond to one third the weight of the full hexapod robot, i.e. 

similar to what the robot would experience when balancing on three actuators. We measured the change 

in bladder volume, by connecting the actuator such that its in/outlet tube extruded into separate skinny, 

transparent cylinder partially filled with water. The amount of displaced water corresponds to changes 

in actuator volume.  

To measure actuator compression under a normal force, we flipped it upside down and added a 

similar range of weight to the top. To keep the actuator from buckling under the normal force, we placed 

it in a square tube. The data from these two experiments is shown in Fig. C.2(A-B). This curve informs 

parameter 𝜕𝑎1/𝜕𝑁𝑒. 

C.5. Torque versus Actuator Curvature 
To measure bladder curvature under external torque, we connected two bladders, similar to that 

described in Sec. C.4, such that their in/outlet tube extruded into separate skinny, transparent cylinders 

partially filled with water. We then created a pulley system with weights in the range 0 to 300[𝑔] to 

create a moment on the bladders, as shown in the inset in Fig. C.2(C), and recorded the amount of air 

displaced in the cylinders. The outcome is shown in Fig. C.2(C). The properties of this curve informs 

the parameter  𝜕𝑎1/𝜕𝑀𝑒. 

 

 

FIG. C.2.  (A) bladder elongation versus pressure. Black markers show mean and standard 

deviation over 10 data points; the red curve is a fitted line. (B) bladder inflation (black) and deflation 

(red) under extension and compression. Dashed curve and text show fitted lines. (C) Change in bladder 

volume in response to torque; the inset shows a sketch of the experimental setup.. 



HARNESSING NON-UNIFORM PRESSURE DISTRIBUTIONS IN SOFT ACTUATORS 26 

 

C.6. Procedural  Generation of Gait Inlet Pressure Signal 
To generate a motion cycle that takes advantage of the entire range of deformations possible 

with the experimental system, we formulated four guiding principles based on our time scale analysis 

to define the parameters of the following input signal function, 𝑝(0, 𝑡) = 𝑝max − 𝛥𝑝𝑚𝑎𝑥/ (1 +

𝑒
(−2𝜅(𝑡/𝑡𝑓

∗−𝑡𝑖𝑛𝑖𝑡/𝑡𝑓
∗))
) + 𝛥𝑝𝑚𝑎𝑥/ (1 + 𝑒

(−2𝜅(𝑡/𝑡𝑓
∗−𝑡𝑒𝑛𝑑/𝑡𝑓

∗))
) . First, we set the upper work point, 

𝑝𝑚𝑎𝑥 ≈ 40[𝑘𝑃𝑎]  from the mid-stroke position, to positively displace fluid to achieve the desired 

extension from the neutral length 𝑙𝑠 (at steady state) while supporting the weight of the robot. Second, 

we set the lower work point 𝑝𝑚𝑖𝑛 from the mid-stroke position so that the negative displacement volume 

evacuates the entire volume of the actuator (or actuators for the entire robot). Therefore, we ensure that 

the actuator is firmly buckled during the gait cycle, giving us the maximum lift. We have now also 

defined Δ𝑝𝑚𝑎𝑥 = 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛 ≈ 140[𝑘𝑃𝑎]. Third, we set the average input time scale 𝑡𝑖
∗ =  𝑂(𝑡𝑓

∗) to 

≈ 0.75 − 1 ≈ 0.875[𝑠𝑒𝑐], as the time required by the pump to span Δ𝑝𝑚𝑎𝑥  (positive and negative 

strokes may differ), and derive our sigmoid logistic growth rate 𝜅 = (6/𝛿𝑇) by the non-dimensional 

transition period 𝛿𝑇 = 〈𝑡𝑖
∗/𝑡𝑓

∗〉 ≈ 6. Thus, we ensure a maximal pressure gradient between bladders on 

opposite sides of the actuator's neutral plane, leading to maximal stride length. (4) In the same way as 

with sigmoid functions, we set the plateau period of the input signal to be proportional 

to(𝑡𝑖𝑛𝑖𝑡 − 𝑡𝑒𝑛𝑑) ≈ 14𝑡𝑓
∗ which corresponds to the time it takes the fluid to travel the entire length of the 

connective tubing array 𝑙. Using this plateau period as a guide, we can estimate the periodic extension 

for the gait cycle to be ≈ 42𝑡𝑓
∗ , corresponding to two transition periods and two plateau periods; the 

gait cycle frequency is, therefore, ≈ 1/42𝑡𝑓
∗. 
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