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Appendix A

0 Ref. Robot Untethered Dynamic Fhuid Dynamic Change in Characteristic = Fhiid Domain Mass per
Archtype Predictive viscosity, Cross Section Fluidic Cross Slenderness,  Unit Length,
Model @ [Pas]  per Pressure, Section, aj 2] &1 =hase/] m[kg/m]
ru.nu“_..___..h.ﬁ:_hn £y
_Eu.___wm_

1. 14. Appendage Y Y 60:40 Glycerin-Water  1.x 1072 17610710 314%10°° 0.011 1.050
1 27 Tripodal N N Combustion 181077 187x10°12 1871073 0.062 0.064
1. 28, Appendage N N Adr 181073 1L11x10"° 1.13x10°* 0.073 0.578
1. 29, Appendage N Y Air 1.8x1073 1.58 = 10712 4.%10°8 0.002 1230
1. 30 Hand Apparatus N N Air 1.8x1073 8.18x10712 18x107° 0.063 0202
1 3t Appendage N Y Air 18x107° 875x1071 4.x10°8 0.001 1200
1 31 Appendage N Y Water 1.x107° g75x1071! 4.%10°° 0.001 1200
2 15. Appendage N ¥ Silicone Oil 58210 875=1071 4.%10°° 0.001 1.200
2. 13. Appendage N Y 85:15 Glycerin-Water 1.15 873x1071! 4.%10°8 0.001 1200
2. 15. Legged Hexapod N N Air 1.8x%10° 5.63%1071° 256x107% 0.320 2.360
2. 16. Appendage N Y 60:40 Glycerin-Water  1.x 1072 286x10°" 314%10°8 0.001 0.454
2. 3L Appendage N Y Glycerin 113 8751071 4.x10°% 0.001 1200
3. This Study | Lezged Hexapod Y ¥ Adr 181073 341107 332%1077 0.001 0.260
3. This Study | Legzed Hexapod Y Y Water 1.x1072 341%10°° 3321077 0.001 0.269
4. 12. legged quadruped Y N coz 18x% 1073 132%10°1° 1.02x 1077 0.208 0.152
4 17. Legged Quadruped N Y Air 1.8x107° 4.x107° 12x107* 0.100 0.668
4 18. Legged Octopod Y N Mono-propellant 181072 54610712 1965 107" 0.020 0.062
4 19. Legzed Quadruped Y N coz 18%1073 141 %1070 1961073 0.023 1.010
4. 20. Swimming Robot N N Air 1.8%1073 15710710 137Tx10°* 0.063 0.117
4. 21 24 Legged Robot N N Air 1.8x1073 786%1071° 268x107% 0.133 0.300
4 22, Appendage N Y Air 18x10°  224x10710 151x107* 0.109 0.169
4 23, Legged Quadruped N N Air 18x107° 6221071 314x10°% 0.022 0.113
4 24 Appendage N N Nitrogen 185%10°  145x10°%° 372x 1073 0.071 0.263
4 25 Legged Quadpod N N Woater Based MR Flid  625%107%  333%10°F 31077 0.050 0.065
4. 26. Appendage N N Air 1.8x1073 6.03 %1071 4021078 0.003 0.004

! Data presented herein is based on information reported or derived implicitly via images and figures when no such information was
provided explicitly. Accordingly, some data may vary by a factor. However, great care was taken to ensure that the critical parameters
associated with a given system are identified to properly position it in the correct quadrant.

2 In the absence of any references to actual actuation times in an article, care was taken to pick a value that was matched by the system's
own timescales in order to position the work in the right quadrant in line with the authors' report of the transient regime (quasistatic or

inertial).

TABLE. A.1. Characterization of the state-of-the-art in soft robotics™?, used in figure 1.

Tabulated data, Columns 1-11 out of 20.
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Q Ref. |[Appendage Young  AVG. Moment of Stffness WViscous—Elastic Inertial-Elastic Input Plot Plot

Length, Modulus, Inertia I _E#_ Correction  Time Scale, Time Scale, Time Scale, x—axis y—axis

I; [m] E[Pa] Coefficient, 1y Is] t [s] i [s]

Ji

1. 14. 0.100 2% 10° 3861078 0.600 0.005 0.048 0.031 1.05 10! 1.53
1. 27 0.075 4. x10% 5.x10°10 0.600 4630x10710 0.411 0.050 8.89 . 10% 823
1. 28. 0.100 4 x10* 1461071 0.300 3.170x 1078 18200 1.000 574%10° 182x10¢
1. 20, 0.100 8% 10° 1431077 0.800 1.690 % 10°° 0.116 0.004 685x10% 28910
1. 30. 0.130 4 x10* 128 10F 0.500 2.050107° 1.500 1.000 734108 15
1. 31. 0.200 1.5 10° 1.3:10°8 0.800 0.000 0351 0.083 139:10° 4121
1. 31 0.200 1.5x108 13=107¢ 0.800 0.014 0.351 0.083 251=10! 421
2. 15. 0.200 1.5%10° 1.3x107% 0.800 815.000 0.351 0.003 431107 14107
2. 13. 0200 15108 13x107¢ 0.800 16.100 0351 0.003 218x107% 14x10?
2. 15. 0.050 1.98 » 10* 5.46%10°F 0.503 3.860 0.542 0325 141071 1.67
2. 16. 0.125 9.7x10° 273107 0.900 41.400 0215 0.083 52x1073 2.58
2. 31 0.200 1.5 10° 131078 0.800 16.100 0351 0.083 21810027 421
3. This Study 0.109 18108 45x%10°¢ 0.550 0.158 0.029 0.875 1.85%1071 334%1072
3. This Study 0.109 1.8:10° 45x%1078 0.550 87.700 0.029 5.000 333107 5.84x1073
4. 12. 0.173 2.7x10° 1.69 % 107¢ 1.000 2990« 10710 0.002 1320 578x10° 131x10°°
4 7. 0.075 4 x10* 1.98:10°¢ 0.500 6.000 5 1078 0231 4550 3.85:10° 5.08x1072
4 18. 0.032 15x10% 4.x10712 0.800 12501079 1.160 10.900 928x10° 1.07x10!
4. 19. 0216 7.x 10° 221%10°F 0.500 2420% 1077 0.023 0.500 9.58x10% 4.63x1072
4. 20. 0.080 9.7x10° 351x107%0 1.000 4610 10°° 0.119 0.200 2358107 594 %107
4 21 0.060 1.x108 1681077 1.000 3.010x10°% 0.048 0200 16107 241 107!
4 2. 0.055 1.x10F 6.51x1071¢ 1.000 2250%107° 0.049 0.200 217x10° 244x107!
4. 23, 0.045 4. x10% 354% 10710 0.500 72201077 0.258 1.000 3.97x10° 2.38x107!
4. 24. 0.036 7.x10° 241107 0.500 1430%107¢ 0.041 0.050 29x10° §29x107!
4 23, 0.040 8 %104 45%10°U 0.900 0.003 0.072 10.000 2358=100 7.16x107°F
4 26. 0.320 5.16 % 10° 232x10712 0.500 0.000 8.400 84.000 778x10°F  1.x107!

! Data presented herein is based on information reported or derived implicitly via images and figures when no such information was
provided explicitly. Accordingly, some data may vary by a factor. However, great care was taken to ensure that the critical parameters
associated with a given system are identified to properly position it in the correct quadrant.

2 In the absence of any references to actual actuation times in an article, care was taken to pick a value that was matched by the system's
own timescales in order to position the work in the right quadrant in line with the authors' report of the transient regime (quasistatic or

inertial).

TABLE. A.1. Characterization of the state-of-the-art in soft robotics'?, used in figure 1.

Tabulated data, Columns 12-20 out of 20.
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Appendix B

B.1.

Nomenclature

We define vector variables by bold letters, direction vectors by hat notation, non-dimensional
variables by tilde or capital letters and characteristic values by asterisk superscripts.
System physical parameters

Beam length.

Beam height.

Beam width.

Beam material modulus of elasticity.

Beam material mass density.

Solid mass fraction.

Cross sectional extensional stiffness correction coefficient, comparing the
honeycomb structure to a full rectangular cross section structure with identical
dimensions.

Cross sectional flexural stiffness correction coefficient, comparing the honeycomb
structure to a full rectangular cross section structure with identical dimensions.
Beam mass per unit length.

Beam cross section moment of inertia.

Gyration radius squared, and its non-dimensional form.

Change in beam slope due to a single pressurized bladder (intrinsically non-
dimensional).

Change in beam length due to a single pressurized bladder, and its non-dimensional
form.

Structure length-wise bladder density, and its non-dimensional form.

Length of a single bladder segment.

Height of a fluidic bladder cross section.

Width of a fluidic bladder cross section.

Total number of bladder (fluidic cavities) in the honeycomb structure.

Fluid domain material mass density.

Fluid dynamic viscosity.

Small parameter representing slenderness of the fluidic domain.

Connective tubing radius.

Total length of connective tubing configuration.

Length of a single connective tube.

Total number of connective tubes in a given configuration.

Ratio of a; the characteristic cross-section at gage pressure to a; the characteristic
change in bladder cross-section.

Effective dimensional scale related to the configuration of the flow-path i.e. averaged
hydraulic radii of bladder and connective tubing.

Dimensionless constant, related to the bladder flow-path i.e. shape of the bladder
cross-section.

Dimensionless constant, related to the connective tubing flow-path i.e. shape of
connective tube cross-section.
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Variables and arguments

t,T,T,
0,0

ENMD
(xS' yS' ZS) )
(XS' YS' ZS)
X
(Cen “er, er),
(*En,°Eq, °Ey)

(d1,d3,d3)
(Dli DZ' D3)

uq, U
us, Us
Ag, Ag

AerAe

Ap, A

p’'p

ag, A

Ao, Oy

bl, B!
bb' Bb
b., B,
b}, B}
b, B;

Time dimension, viscous-elastic non-dimensional time, and Inertial-elastic non-
dimensional time.

Curvilinear length coordinate along the beam reference curve, and its non-
dimensional form.

Solid domain lab frame of reference.

Solid domain lab frame coordinates, and their non-dimensional form.

Lab frame position vector for the beam reference curve (i.e. the neutral axis).

Spatial Serret-Ferent triad (at time t) associated with the current position along the
reference curve in a curvilinear frame using the unit tangent *e, pointing the direction
of motion, the unit normal ®e,, , unit binormal e, and their non-dimensional form.
Spatial director (strain vector at time t), in the curvilinear frame of reference
(sen' Se‘r' set)'

Material director (strain vector at time t = 0), in the curvilinear frame of reference
(Cen, “eg,°ey).

Beam deflection displacement and its non-dimensional form.

Beam extension displacement and its non-dimensional form.

Total structure measure of stretch, Intrinsic kinematic variable, and its non-
dimensional form.

Measure of stretch due to external traction, Intrinsic kinematic variable, and its non-
dimensional form.

Measure of stretch due to fluidic pressure, Intrinsic kinematic variable, and its non-
dimensional form.

Total structure measure of curvature, Intrinsic kinematic variable, and its non-
dimensional form.

Measure of curvature due to external traction, Intrinsic kinematic variable, and its
non-dimensional form.

Measure of curvature due to fluidic pressure, Intrinsic kinematic variable, and its non-
dimensional form.

Cross sectional internal normal force resultant due to traction, and its non-
dimensional form.

Cross sectional internal shear force resultant due to traction, and its non-dimensional
form.

Cross sectional internal moment resultant due to traction, and its non-dimensional
form.

The reciprocal vector to d;.

External distributed force per unit mass.

External distributed moment per unit mass.

Body force distribution per unit mass, and its non-dimensional form.

Contact force distribution per unit mass, and its non-dimensional form.

First moment of body force distribution per unit mass, and its non-dimensional form.
First moment of contact force distribution per unit mass, and its non-dimensional
form.
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X5, ¥ 25)

CIR DN
X5, Yr, Z5)
(uw,v,w),
U,v,w)
p, P
pl’ PI

p, P

q,0Q
a7, Qf
qi, Q7

a, A
ag, Ao

ap1'Ap1

aNllANl

aMliAMl

Fluidic domain curvilinear frame of reference. Defined such that the X is the
streamwise direction along bladder length [,,, and the cross sectional plane y; — Z¢
is perpendicular to X;.

Fluid domain curvilinear coordinates, and their non-dimensional form.

Fluid domain velocity components, and their non-dimensional form.

Fluid domain pressure, and its non-dimensional form.

Bladder effective fluid pressure for slope generation, and its non-dimensional form.
Bladder effective fluid pressure for extension generation, and its non-dimensional
form.

Volume flow rate in fluidic cross section, and its non-dimensional form.

Bladder permeability, and its non-dimensional form.

Connective tubes' permeability, and its non-dimensional form.

Fluid domain cross section area, and its non-dimensional form.

Cross section area of the bladder-tube array at gauge pressure p = 0, and its non-
dimensional form.

The change of the cross section area due to the fluid pressure, and its non-dimensional
form.

The change in cross section are due to extensional beam deformation, and its non-
dimensional form.

The change in cross section due to beam bending deformation, and its non-
dimensional form.

Characteristic Scales

Characteristic beam deflection.

Characteristic beam extension.

Characteristic first moment of body force distribution per unit mass.
Characteristic first moment of contact force distribution per unit mass.
Characteristic body force distribution per unit mass.

Characteristic contact force distribution per unit mass.

Characteristic shear force per unit length.

Characteristic normal force per unit length.

Characteristic external force per unit mass.

Characteristic external moment applied per unit mass.

Characteristic first moment applied by shear force (x — axis) per unit length.
Characteristic first moment applied by normal force (z — axis) per unit length.
Characteristic bladder density.

Elastic-inertial time scale.

Characteristic curvature.

Characteristic moment resultant.

Characteristic squared radius of gyration.

Characteristic fluid velocity.

Characteristic cross-section at gage pressure.

Characteristic change in bladder cross-section.
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tr Viscous-elastic time scale.
u* Characteristic axial flow velocity.
p* Characteristic fluid pressure.

TABLE. A.1. Summary of Nomenclature for proposed model. Entries are by order of
appearance. (a) system physical parameters. (b) Variable and arguments. (c) Characteristic scales.
Calculated entries are referred to respective sections.

B.2. Problem Formulation

We consider the dynamics of an elastic beam, initially at rest. The internal structure of the beam
is a fluid filled bladder matrix interconnected by slender tubing (as illustrated in Fig. B.1.). Pressure
within the fluid field both generates and is induced by the deformation of the appendage
(interchangeably referred to as leg). Note: bladders in this appendix are referred to as top and bottom

. N L |

FIG. B.1. Hlustration of the studied soft robotics appendage, with interconnected bladder-
tube array configuration.

We define vector variables by bold letters, direction vectors by hat notation, non-dimensional
variables by tilde or capital letters and characteristic values by asterisk superscripts. We define
appendage length [, height hg, width w, and require a slender geometry with hg/l; < 1 and w, /1 <
1. Appendage material modulus of elasticity and mass density are defined by E and ps, respectively.
We define a lab frame of reference (eq, e,, e3) = (X5, Vs, 25) and a lab frame position vector x =
(x5(0,1),y5(0,t), z,(0,t)) for the appendage reference curve (i.e. the neutral axis). We define the
deformation of a material fiber in the cross section area in a curvilinear frame of reference using the
strain vectors, denoted spatial directors (d,(6,t),d,(0,t),d5(6,t)) and respective material directors
(D,(68),D,(68),D3(0)). We define a Serret-Ferent triad associated with the current position along the
reference curve in a curvilinear frame using the unit tangent Se; pointing the direction of motion, the
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unit normal e, , unit binormal Se;, and define a curvilinear length coordinate 6 along the beam
reference curve (see Figs. B.1).

We limit our analysis to a 2D deformation thus considering only directors (d4 (6, t),d3(6,t)).
We thus redefine the lab frame position vector x = (x4(0, t), z;(0, t)) with the deflection axis in the
e, direction being x4(8,t) = x¢(0) +u,(6,t) and extension axis in the e direction z,(0,t) =
zo(0) + u3(6,t) where for an appendage initially (at t = 0) straight at unstrained state, x,(6) =
Const,z,(0) = 0, and thus x4(60,t) = Const + u,(0,t) and z,(0,t) = 0 + u3(6, t) respectively.

The explicit representations of relevant directors are,

dzg  0xg
_ _ B.1
d (ae' 69)’ (B-1)
dx. 0z
d =(—5—S) B.2
37 \00 ' 06 (B:2)

A parallel bladders' matrix is interconnected and arranged perpendicular to the d5 direction
along the appendage length. The length of a single bladder segment is denoted [;,. The effect of the
fluidic cavities on structure properties are represented by the solid mass fraction f,, = ((Wphplpn)ps +
(Iswshg — wphylpyn)ps) /(Lswshgps), mass per unit length m = ps(wshg)f,,, coefficients f,, f;
correct for cross section extensional and flexural stiffness reduction compared with a full elastic beam,
appendage cross section moment of inertia I = (w h3/12)f; and the squared gyration radius y'* =
(ps/m)I. We limit our analysis to configurations where the bladders are taken as unit-cells of the
structure wy, /I < 1 and (wy, - n/2)/ls~1, where n/2 is the total number of bladders arranged along
the length L ; enabling us in order to approximate the above structural properties to constants
representing an averaged property of the solid domain.

Constitutive laws are formulated using the intrinsic kinematic variables of A for the measure of
stretch and a for curvature. The total stretch is defined by 4, = 4, + 4, and total curvature is defined
by as = a. + a,. Both 4, and a, are due to external traction and A,, a,, are due to pressure in the
fluidic cavities. We define the cross-sectional internal forces and moment resultants due to traction for
normal force N,, shear force V, and moment M,. A single pressurized bladder will create a change in
beam slope ¥ and a change in beam length defined ¢, and structure bladder density ¢ = (n/2)/L;.

We introduce a fluidic domain coordinate system (x¢, y¢, z¢) defined such that the X is the
streamwise direction along bladder length [, (see Fig. B.1). The plane ¥, — Z; is perpendicular to X;.
Bladder height is h;, and width w,,. We define a small parameter representing slenderness of the fluidic
domain &; = 2r,./l « 1, where r, is the tube radius and [ = [, n, the total length of connective tubing,
with [, the length of a single connective tube and n. as the total number of connective tubes in a given
configuration. Tube and bladder characteristic cross section dimensional scale is .~h;,. The parameters
of the fluidic domain are viscosity u, velocity (u, v, w), gauge pressure p. Under small local strains
assumption, bladder cross section area may be expandedto  a(x,p, Ne, M) = ao(xs) + apl(p, xr) +

aNl(Ne,xf) + ap, (M, x¢), Where aq (x) is the cross section area of the fluidic domain i.e. bladder-
tube array, at the gauge pressure p = 0, and apl(p, x) describes the change of the cross section area

due to the fluid pressure, ay, (N, x5) the change in cross section are due to extensional appendage
deformation and a,,, (M,, x;) the change in cross section due to appendage bending deformation. The
governing equations for the incompressible, creeping, Newtonian flow are the stokes equation,

Vp = uV?u (B.3)
and conservation of mass

V-u=0. (B.4)

Over the solid domain we use an intrinsic Cosserat rod formulation following Rubin [1,2],

limited for the assumption of negligible cross sectional extension, cross sectional shear and tangential
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shear respectively limiting the cross section to maintain its initial shape and remain perpendicular the
reference curve,
mx =mb + [Ny 53— a.Vel e + [Vo3+ acNe ey
+[d® - m(b*—y'td,)d, s
where d® =d3/ds;3 is the reciprocal vector to d; and the subscript 5 stands for the partial
derivative with respect to 8. The external distributed force b per unit mass, and external distributed
moment per unit mass b are defined such,
b=b,+b,, (B.6)
b' = b} + b, (B.7)
where body force distribution per unit mass b, = (by, [Nm?/Kg],b,,[Nm?/Kg]) ps/m, contact

(B.5)

force distribution per unit mass b, = (b [N/m],b [N/m])/m, first moment of body force
distribution per unit mass b} = &(bbx Nm3/Kg] ,bbz[Nm3/Kg ) first moment of contact force

distribution per unit mass bl = —(b [Nm/m], [Nm/m ) We define characteristic appendage

deflection uj[m], characteristic first moment of body force distribution per unit mass b3*[Nm/Kg],
characteristic first moment of contact force distribution per unit mass b2*[Nm/K g], characteristic body
force distribution per unit mass b,[N/Kg], characteristic contact force distribution per unit mass
b:[N/Kg], characteristic shear force per unit length by~V,*/l;[N /m], characteristic normal force per
unit length b;~N,;/I;[N/m] , characteristic external force per unit mass b*~by/m[N/Kg] ,
characteristic external moment applied per unit mass b*~b1*/m[Nm/K g], characteristic first moment
applied by shear force (x — axis) per unit length bi*~b: I, [Nm/m], characteristic first moment
applied by normal force (z — axis) per unit length b1*~b; [.[Nm/m]. Next, we denote the solid field
characteristic appendage extension uz~uj, characteristic bladder density ¢*[bellow /m], characteristic
elastic-inertial time scale t;[sec], characteristic curvature a;[1/m], characteristic moment resultant
M;[Nm], characteristic normal force resultant N, [N], characteristic shear force resultant I,*[N] and
characteristic squared radius of gyration y;; ~12[m?]. Over the fluid field, we define the characteristic
velocity (u*,v*,w*)[m/sec], characteristic gauge pressure p*[Pa], characteristic fluidic domain
cross-section at gage pressure aj[m?], characteristic change in bladder cross-section aj[m?] and
viscous-elastic time scale t¢[sec].

Next we define the normalized variables and coordinates. Normalized appendage curvilinear
coordinate ® = 6/l , inertial-elastic time T, = t/t;, curvilinear deflection axis X = x,\uj and
deflection variable U; = u,/uj = uy/lg, curvilinear extensional axis Zs = z,/l; and extension
variable U; = us/uj, appendage curvature &, appendage stretch 1, moment resultant M, = M, /M ,
normal force resultant N, = N, /N, shear force resultant , = V,/V,*. First moment of body force

b1'12 b1 12
) by, /(

per unitmass BL = (b2 /bi’, bt /bi"), body force distribution per unit mass B), = (bbx/(

)), first moment of contact force distribution

) by,/

)), contact force distribution per unit mass B, = (bcx/bx,bCZ/bZ). Fluidic domain spatial

distribution per unit mass B} = (bbx/(

byl§

by1§

G
coordinates (Xr,Y;,Zr) = (x/1, yg/hp, zs/hp) , viscous-elastic time T =t/t; , fluid velocity
w,v,w) = (u/u*, v/v*, w/w*), fluid field pressure P = p/p* = p/E, bladder effective fluid
pressure for slope generation P’ = p’/E, bladder effective fluid pressure for extension generation P =
p/E, volume flow rate in fluidic cross section Q@ = q/(u*ag), bladder permeability Q7 = q7 /CPr2;,

and connective tubes' permeability Q5 = q¢/C¢r, ff, where 7.¢¢ and Ci~4m are respective effective
scale and dimensionless constant related to the configuration of the flow-path i.e. shape of the cross-
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section, and g} (i = c, b) is defined by the relation q = —((1/y)6p/6xf)q{. Fluidic cross section area
is defined a(xg,p, Ne, M) = ao(xs) + apl(p, x¢) + any(Ne, X ) + apy (Mg, x¢) and is normalized
though ag =mr? and aj = (da;/dp)p* such that it reads A(Xp,P,N,,M,) = Ao(Xy) +
Apl(P’ X;)o, + An,(Ne, Xf)op + Ay, (Me, X )0, Where o, = a;/ag. The slope introduced by a
single bladder resulting from fluidic pressure and external traction are &, = a,/ay, and @, = a./a;
respectively, extension introduced by a single bladder resulting from fluidic pressure and external
traction are Zp = A,/ and Ao = A,/ 2% respectively, non-dimensional squared gyration radius is
Y11 = y11 /911 = ((p,/m)If;) /12 and last bladder density along appendage length ® = ¢/¢p* =
¢/((n/2)/1s).

B.3.  Analysis

B.3.1. Fluidic Field Governing Equations

Substituting the normalized variables into (1.1) and (B.4) yields in leading order,

o U U ok 0P .

ox; ov? az? oy, oz, B8)
ou v ow

(B.9)

— +—+—~0,
oxX; " oY, " az;

where 27, /1 ~v*/u* = & « 1 and u* = p*efl/u. Integrating (B.9) over the fluidic domain cross-
section in the Y; — Z¢ plane and applying Gauss theorem yields,

0 h 0A
¢ =0

E-l— t}’?v*ﬁ = (B.lO)

We define Q, (A(Xf, P)) as the normalized volume flow rate calculated by the solution of the

Possion equation (B.8) for dP/dX; = —1 with no-slip boundary condition set at the wall, (U,V, W) =
V.au- From linearity, Q can be obtained via Q; as

oP
= ———0 (A(x:,P)). (B.11)
From order-of-magnitude analysis we obtain
i =Clr}s, i=cb (B.12)
where 77 and C'~4m are respectively the effective scale and dimensionless constant related to the
configuration of the flow-path. Taking the derivative of A(X¢, P, N, M) = Ao(Xf) + AP1(P' Xf)ap +
Ay (Ne, X¢)op, + Ay, (M, Xp )0, with regard to T and substituting (B.11) into (B.10) we obtain,
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a2p P (90,
_ sz . Ql (A(Xf, P)) + a_Xf . <E)
04, (P,0)gp 0Ay,(M,,0) 0M,(0,T) (B.13)
< op ot " R(Y) oM, aT

04y, (N, ) aN,(0,T)
| (R R ) =0
The resulting non-linear diffusion equation represents the balance between the change in axial
flux to the change of cross section area over time due to fluidic pressure, solid domain section moment
resultant and normal force resultant. We define R(X;) = 1 and R(X;) = —1 discretely to indicate
bladder position at the upper or lower row respectively. 6AM1/aMe represents the change in cross
section due to section moment resultant and 9Ay /N, for the change in cross section due to section
normal force resultant. From order-of-magnitude analysis of (B.13) we obtain the viscous-elastic time
scale t; as,
ty = G*Lﬂz = *a Ifl Z
P& QP &
For the case of small local strains of the fluidic cross section due to pressure, and for any bladder
geometry, a proportional relation between A, and P is upheld, and the viscous elastic time scale
becomes t; = u(aal/ap)|p=po/aggf. This proportional relation of aapl/ap is supported over a wide

(B.14)

range of pressures as seen in the experimental derivation of system parameters, see SI Appendix C.2
Fig. C.1.

To complete the fluid field model, Equation (B.13) requires us to define two boundary
conditions and one initial condition. At X, = 0 a Diriclet condition is set representing the pressure input
introduced by the syringe pump,

P(0,T) = Prnax — 4Pnax/ <1 + e(_ZK(T_O'S/t}))>

) (B.15)
+ BB/ (1 4ol 2T tf))> ,
a Neumann condition at X = 1 representing the last bladder being sealed,
oP(X;,T)
“ax. =0, (B.16)
Foo =1

and finally, with the fluid field starting from rest, we set the systems initial condition to
P(X;,0)=0. (B.17)
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(@) (b)
e v
R=1."
R
€3 Me R=-10
v J/\LI
(©) (d)
aq a

-

|
| |
l |
’ !

N+ N,- R=41,M, + R=+11,M, +
FIG. B.2. lllustration of Sign convention using right-handed system. (a) Lab-frame and
positive moment defined. (b) Illustration of section internal/resultant forces and moment V,, N,, M,.
Bladder change in cross section a; presented in response to section resultants: (c) N, and (d) M,.
Bladder section initial area a, is denoted in dashed lines, gray areas indicate induced change in cross
section a, due to respective resultant.

B.3.2. Constitutive Laws for a Fluid-Driven Soft Appendage

We now turn formulate the solid field Cosserat rod continuum constitutive laws. Our intrinsic
kinematic variables As[1] = A, + 4, stands for the total stretch measure and a;[1/m] = a, + a,, for
the total curvature measure of the reference curve. The subscript e and p represent the source of the

measure being from traction i.e. external forces applied to the surface, or pressure respectively. We
define in dimensional form,

Inrinsic Kinematic Variables

sq1/2
ds3
As = 177 (B.18)
SD
33
°dy,3- °d3
s = 1z (B.19)
Sd33 SD33

where d35 = d5 - d5 defines the metric's of d vector at present configuration i.e. spatial frame, and
D35 = D5 - D5 defining the metric's of d vector at t = 0 configuration i.e. material frame. For a beam
(straight rod) at relaxed state oriented along the lab frame results in (D4, D,, D3) = (e4, e,, e3), thus
we can formulate

D33 = D3 . D3 = 63 . 63 = (0,0,1) . (0,0,1) =1. (BZO)
The pressure induced measures for stretch and curvature are defined
p 04
== , B.21
» = EaG/E) (5:21)
" da
a, =—"1 4 (B.22)

E AQ'/E)
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where the effective pressure for slope and extension generation are respectively p' = (pg — py) and
p = (pa + pu)- Py and p, are the fluidic pressures at the upper and lower bladders, d4,/9(p/E) is
the measure of stretch per cross section per normalized pressure sum and da,,/d(p/E) is the measure
of curvature per cross section per normalized pressure difference. Formulating the respective non-

dimensional form yields
0a, oy
T YT B.23
2 /E) - TG /E) (8.23)
aip — o a¢
a(p/E) a(p/E)
where 9y /d(p'/E) represents the change in appendage slope per cross section per normalized
pressure difference and 8{/d(p/E) is the non-dimensional change in length per cross section per
normalized pressure sum. The later 9{/d(p/E) may now be formulated in dimensional in form
IS & a¢
d(p/E) d(p/E)
where d¢/d(p/E) is the dimensional change in length per cross section per normalized pressure sum.
Substituting our normalized variables into equations (B.1), (B.2) and (B.18) - (B.22)
respectively, we obtain our directors and kinematic variables in non-dimensional form,

(B.24)

(B.25)

d, =(()+2% 0% B.26
7 \\wi) 00’ a0 )’ (B.26)
~ _(0Uy (I  9Us
d; = (W’ <u—1> + %> (B.27)
and,

L1 sdyy Ay Pty

e = =12 f
& s_?i a(p/ E)’ (B.28)

2 A

1 d~1x'3d3x+d~12'3d~32 P(X,)
lsa;  sq/2spl/? 4 a( /E) (B.29)

~ a
O p

ae =

From Order-of-magnitude analysis of we determine the characteristic scale for the directors
di~uj/ls and d5 = uj/l,, as well as for the measure of curvature a;‘~a;~ll and stretch 15~A;~1.

Constitutive Equations, Force and Moment Resultants
The constitutive equations for normal force resultant N,, shear force resultant V, and bending
moment resultant M, are now formulated in dimensional form,

Ne = Ehswsfe(Ae — 1), (B.30)
h3
M,=E25f q,, (B.31)
12
V, = —%d3,*M, ,. (B.32)
Substituting the normalized variables (B.30)-(B.32) become

~ - 1
Ne = (/13 - ,F)' (B.33)

e

Me = de , (B34’)
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7= 1 oM,
e Sd;éz 00 (B-35)

With order-of-magnitude analysis respectively yielding,

NZ~Ehswsfoll , (B.36)
wehd 1

Mg slts ¢ 2 B.37

B (B:37)

V*~EWS—h§)f-i. (B.38)

¢ 12 "M 12

B.3.3. Serret-Ferent Curvilinear Coordinates
The Serret-Ferent triad associated with the current position along the reference curve is
characterized by the unit tangent *e; along beam length, the unit normal Se,, and unit binormal *e.,
see illustrated in Fig. B.1. In dimensional form,
_%d3(0,0)
Tl
(dy3- °d3)°d,y
- asAsSD33 .
Substituting the normalized variables yields,

sEt — (d~3x' d3z)

S

, (B.39)

S

e, = (B.40)

- ) B.41
Sd;éz ( )

(i dsy)

Ep=—"—1 (B.42)
st
33

B.3.4. Solid Field Governing Equations

For the two way coupled solid field governing equations, the intrinsic Cosserat rod formulation
is used with both the deflection component U, in the e, lab frame direction and tangential deformation
component Us in the e5 direction included. Substituting (B.6), (B.7), (B.18) - (B.42) in conjunction
with normalized variables and applying order of magnitude analysis onto (B.5) we obtain two scalar
equation; one in the X direction

02U, N, e v, ey
X 1T, = By + |l o= = T3@eVe | "By + |1y =0+ Ms@eNe | *Eng

J0T? 00
] 1 0%d,\ -
I e 1_ 11 1x
* 50 dss <H6Bx Y™ 572 >d3x (B.43)
9%d,,\ -\ -
+ (Hngl — oyt (’)T;Z> ds; |dix ]

and in the Z, direction
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02U, N, o, 1.
ZS:Hl W =BZ+ HZ 90 H3aeV EtZ H4%+H5aeNe EnZ

a1 92d,
_ — 1 __ 11 X
*50 dys <H6B" Y 57 )d3x (B.44)
02d,,\ -\ -
+ <”83z1 — Iyt 6T;Z> ds; |diy

where both are scaled by non-dimensional numbers I1; = (t;/t; ) I, = N; /(I;mb*) , I3 =
(@gV)/(mb*) , Iy =V, [(lsmb*) , [Ts = (agNg)/(mb*) , llg = Il = (d1b"*d3)/(l;d33b") | I,
My = ((diy*t*d3)/ (12 d§3))(t;/t}‘)2. These can then be reduced to read,

, <62U1 /6T2>
T
02U, /dT?

Linear Inertia
_ Bx 6[\76 Etx ~ 7 Enx
= (fi_,z) + [n 20 aeV]< +naeNe <Enz)

Traction Curvelinear Curvelinear (B 4_5)
Tangential force Normal force '

0%d,,.\ -
1 _ vyll.,.2 1x
al1 <B" v aT2>d3" <d1x>

+ == ~ ~
20| d 0%d,,)\ - d
33 + <le —yliz2 an) ds, 1z

Rotary Ineria

Where ¥, and N, are the non-dimensional shear and normal force resultants, @ is the non-
dimensional curwlmear length coordinate along the appendage reference curve. We define our
kinematic variable for curvature &,, structure reference curve tangent E; = (dgx, dgz) /dl/ %and normal

(dlx,dlz)/dl/z components with the non-dimensional directors being d, = (1 + dUs;/
80, 0U,/00) and d; = (dU,/00,1+ dU3/00) and ds; = d; - d; . Last we define the non-
dimensional distributed traction force per unit mass B = (b,/(V,"/l;m), b,/ (V" /l;m)) and moment
per unit mass vectors B! = (bx/(V /m),bL/(V; /m)) are respectively. Three nondimensional
numbers determining the dynamic regime of the structure. The time scale ratio T = t5/ts, where
ti~mld/EIf; is the elastic-inertial time-scale and t;~u(aa1/ap)|p=po/a3512 the viscous-elastic
time scale, the normalized squared radius of gyration Y = If;/(wshf,[2) and the force scale ratio
determining the balance between shear and normal forces n = N, /V," = Ehswsfe/(EwShEﬁ/(lzlf)).

Our force and first moment distribution per unit mass terms are also defined in non-dimensional form,
and the respectively defined,

psls psts (b; be
B= < By, tBe, s — <b_x) By, + (K) B, |, (B.46)
psl? | psl2 (b7\ . . (bF
Bl=<m By +Bey s — BT By, + bF B, |. (B:47)

Order of magnitude analysis of B, B! yields b:~V,*/l5, b*~bi/m, bi*~bils, b™~b} /m,
by~Ng/lg, bY*~b3lg, y1t*~I2. Determining the relevant dynamic regime of the structure we define
the time scale ratio
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g _ aseiJmu;l3/EIf; (B48)
tf .u(aal/ap)lp=po
where t;~+/mu;l3/EIf; is the elastic-inertial time-scale and tr = 1(0ay/0p)|p=p,/aes the viscous-
elastic time scale.

For a well-posed problem, Equation (B.45) requires six boundary conditions and four initial
conditions. The problem presented in this paper is a cantilever beam. In a similar manner to the classic
Euler-Bernoulli beam theory, where boundary conditions are applied over the overall structure quantity
of a reference curve, we set the following geometric conditions.

U,(0,T)=0 (B.49)
or slope
oU, _o
(a@) o (B-50)
and for U5 extension,
Us(0,T) = 0. (B.51)

Dynamic conditions on the other hand, relate to additional displacement due to external
moments and normal, shear forces at the boundary. Using (B.29), (B.34) and (B.35), Dynamic
conditions are thus applied for moment

1\7Ie|(1’T) =0, (B.52)
shear force

Ve|(m =0, (B.53)
and respectively for normal forces over U; using (B.33) and (B.28)

N,| an =0 (B.54)

Last, initial conditions are directly applied over U; and U5 setting our appendage to start from

rest,
U,(0,0) =0 (B.55)
and
U3(0,0)=0. (B.56)
As well as over the initial time derivative,
(aUl) =0 (B.57)
aT (@'0) )
and
(aUB) — 0 (B.58)
aT (@’0) ' )
See Matia & Gat [3] for a more detailed generalized approach for any set of initial and boundary
conditions.

B.3.5. Coordinate Mapping Between Solid and Fluid Domains

An essential step in formulating the predictive model is the two-way coordinate mapping of the
fluid and solid fields. We thus correlate local pressure gradients associated with the deformation of the
structure onto the fluid field to determine deformation-driven flows, and, conversely, we can determine
fluid-driven deformation by mapping the distribution of fluid pressure within the structure. Whereas a
generalized algorithm for realizing any arbitrary configuration is found in Matia & Gat [3]; In this paper,
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we present a simplified approach for configurations with a single continuous array of bladders and
tubing across the entire solid field. In Fig. B.3. we present a schematic setup of parallel (panel a) and
cross-over (panel b) serpentine configurations discussed in this paper.

We define a methodology for bladder index j from left to right, and separately for top and
bottom by R = 1 and R = —1 respectively see Fig B.3a. Note: bladders in the main text are referred to
as 'right' and 'left' due robot orientation; these are respective to 'top' and 'bottom' in this appendix.

(@) l‘
R=1""TF
R=-1 :
F
(b) i
-— ' Gi{
R=1 I
>
N

0 1/3 2/8 3/3 4/8 5/8 6/8 7/8 1
| | | | | |

@ — Xy Coordinate Mapping

1 3 5 7 9 11 13 15
/Il6 /|16 /|16 /Il6 /|16 i/16 |/16 |/16

X — 0 Coordinate Mapping
FIG. B.3. Schematic illustration of the appendage section showing connectivity
configurations. (a) Parallel serpentine configuration. (b) Crossover serpentine configuration.
Bladders' index j in black. Scale bars indicate the @ coordinate used for bladder position in the @ —
X coordinate mapping — bladder start coordinate (upper bar) and X; — @ coordinate mapping —
bladder mid coordinate (lower bar).

0 — Xy Coordinate Mapping, X (@)
A mapping of fluid pressure onto the solid field is essential in order to determine the change in stretch
and curvature as a result of fluidic pressure gradients. This fluid-driven deformation is introduced by
the coupled intrinsic kinematic variables (1.8)(B.28) and (1.9)(B.29), respectively. First, we set the x-
axis (0@ - R) € [-1,1]. ® € [0,1] represents the non-dimensional coordinate along appendage length;
the positive or negative signs indicates mapping of the fluid pressure onto a top or bottom bladder
respectively, see Fig. B.3. Next, we set the corresponding y-axis X;. We assign connective array
parameters for: number of total bladders n = 16[1] (i.e. for both top and bottom), number of connective
tubes n. = 15[1], length of connective tubes [, = 0.04[m], length of bladder [, = 0.018[m]; we then
calculate the total length of bladder-tube array for mapping purposes ¢, = lpn + [.n. . We define the
size of a single bladder along the ® coordinate as the total non-dimensional length ® = 1 divided by
the number of bladders in one row |(@ - R)| = (1/(n/2)). Following, we set the first bladder x-axis

coordinate ®},.;, = 0 and end coordinate ®%,, = (1/(n/2)). Each consecutive bladder afterwards is

given®! . =01 +o(1/(m/2))and 0’ , =0/ . + (1/(n/2)).
The y-axis is next to be defined. We define the non-dimensional bladder length £, = [,/4;,: and tube

length L. = I./€:0, and construct the X mapped position such that the solid field coordinate @ maps
to the center of bladder length [,,. The first connecting bladder is set Xf1 = L, /2; subsequent connected
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bladders are added XJZ :X;_l + L, + L. in the order of their connection i.e. at the cross over

configuration Fig. B.3b the bladder connection order would be Q.=
{1,2,3,—4,-5,—6,—-7,-8,8,7,6,5,4, —3, —2, —1}. See Matia & Gat [3] for a more detailed generalized
algorithm. The mapping detailed above generates a C° continuous mapping function. In Fig. B.4 we
plot the coordinate mappings' for parallel serpentine (panel a) and crossover serpentine (panel b). For
detailed tabulated data used in the plots, see S| appendix B.4 Table B.1a, B.1b.

@ =10
0)
50.8:
£ 0.6
2
§ 0.4
S 0.2
5
= 0.0
®) =10
%o.sr
L 0.6
2
204
<02 Ll
5
=o00 INEEN

10 -05 00 05 10
Solid coord., @-R [!]
FIG. B.4. Plot of coordinate mapping @ — X for configurations used in the article. (a)

Parallel serpentine. (b) Crossover serpentine.

Xy — 0 Coordinate Mapping, @ (Xy)

Next, we turn to map the solid field deformation onto the fluidic pressure field. Equation (1.1)
shows deformation as a source term for pressure generation by dM, (0, T)/dT and dN,(6,T)/dT.

Our objective is to map our resultants onto the fluid field in order to determine their contribution
to it. We set the x-axis to represent the non-dimension length along the fluid domain X, € [0,1]. As for
the y-axis, we prescribe (0 - R) € [—1,1] coordinates corresponding to the solid field mid-bladder
lengthwise position @ € [0,1], multiplied by R = 1 for the top bladder and R = —1 for the bottom
bladder.

Following we set mapping. The first connected bladder is assigned an initial X}_im-t = 0and

end value X},end = L, atitsrespective (0 - R) position. Each subsequent connected bladder is assigned
— yj-1
= X/

.end

an initial-value X}’init = X]Z"l.m.t
position (O - R). See Matia & Gat [3] for a more detailed generalized algorithm. The mapping detailed
above generates a C° continuous mapping function. In Fig. B.5 we present coordinate mappings' for the
two configurations considered in this paper: Parallel serpentine (panel a), crossover serpentine (panel

b). For detailed tabulated data used in the plots see Sl appendix B.5 Table B.2a, B.2b.

+ L. and an end value XIZ

end + L), at respective solid field
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Fluid Coord., Xy
FIG. B.5. Plot of coordinate mapping Xy — @ for three key configurations used in the article.

(a) Parallel serpentine. (b) Crossover serpentine.

|
—_
)

B.3.6. Formulation of R(X¢)

The function R(X;) is a function used to identify the position of a given bladder in an upper or
lower row. R = 1 indicated an upper bladder and R = —1 for lower bladder respectively. It is derived
as a C° continuous function from the coordinate mapping Xr—0as

(X)) =0, 0
RX) =) x) 20, 290 (- (B.59)
loxp)

B.3.7. Formulation of dA, /0N, , A,(M.,©)/dM, , dA,(P,0)/dP and
@ (A(x,,P))

The functions Ay, (Ne, ©)/0N, , 0Ay (M., ©)/0M, 0Ap (P, ©)/0P represent the change in

cross section due to section internal resultants N,, M, and pressure P. The function Q, (A(Xf, P))

stands for the fluidic cross section permeability. The abovementioned functions' value dependents on
the fluidic cross section in question being that of a bladder or a connective tube. As such, their value is
derived directly from the coordinate mapping Xy — @ as a ¢° continuous function differentiating
between the parametric value referring to bladder or tube by setting,
00(X
(200t _ 0, 1)
0X¢
00(X
*)
0Xr

LX) = ) (B.60)
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00(Xy) _o 1
Io(Xr) = o , (B.61)
0X; bl

with bladder permeability Q¥ and connective tube's Q¢ respective to X position. We can now
define the unsteady pressure term representing the change in cross section per unit pressure,
94, (P,0)
b\ _
— = (04, /ap)|p* LX) (B.62)
and the feedback source terms from the solid field resultants for normal force N,, and moment
M, coupling solid field deformation to flow.

0Ay,(Ne, 0) .

T{ = (04n,/0N,)| .11 (X) (B.63)
04y, (M., 0 _

L‘e) = (9Ay,/0M,)

i M;Q(Xf) , (B.64)
e

For the case of (B.62) - (B.64) the value for 60(Xf)/6Xf # 0 is set to zero, as connective tube
segments do not change their cross section area due to force and moment resultants (being external to
the appendage) nor do they do due to pressure being constant cross section elastic tubes. As such it is
of note to mention that for the connective tubes the fluidic governing equation (B.13) degenerates to
62P/6Xf2 = 0, lending to the understanding of their contribution to fluid domain pressure solution
being a steady state linear pressure gradient proportionate to their length.

And last, we define @, as a function of X as we progress from bladder to tube and vice versa
along the fluidic domain. Calculating the physical value of g§ and g?, see section C.2, we then set our
bladder-tube scaling argument for Q, using (B.12) separately for atube Qf = q§/q¢* and bladder Q2 =
q?/qP* and define

Q: (4(X7.P)) = QP rp(Xy), (B.65)
such that we alternate between Q2 or Qf respective to X¢ position.
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B.4.  Tabulated Data for & — X, Coordinate Mapping

(a) (b)
OR | X/(O)|jR @R | Xs(0O)|jR
—~1.000 [ 0.533 |-8. -1.000 | 0.467 |-8.
—-0.876 | 0.533 |-8. —-0.876 | 0.467 | -8.
—-0.875 | 0.598 |-7. -0.875 | 0.402 | -7.
-0.751 | 0.598 |-7. -0.751 | 0.402 |-7.
-0.750 | 0.663 |—6. -0.750 | 0.337 | -6.
-0.626 | 0.663 | —6. -0.626 | 0.337 | -6.
-0.625 | 0.728 |-5. -0.625 | 0272 | -5.
—-0.501 [ 0.728 |-5. -0.501 | 0.272 | -5.
—0.500 [ 0.793 | -4. -0.500 | 0.207 | -4.
-0.376 | 0.793 | -4. -0.376 | 0.207 | -4.
-0.375 | 0.859 |-3. -0.375 | 0.859 |-3.
-0.251 | 0.859 |-3. -0.251 | 0.859 |-3.
-0.250 [ 0.924 |-2. -0.250 | 0.924 | -2.
-0.126 | 0.924 |-2. —-0.126 | 0.924 | -2.
—-0.125 | 0.989 |-1. -0.125 | 0.989 | -1.
—-0.001 [ 0.989 |-—1. -0.001 | 0.989 | -1.
0.000 | 0.011 | I. 0.000 | 0.011 | 1.
0.125 | 0.011 | 1. 0.125 | 0.011 | 1.
0.126 | 0.076 | 2. 0.126 | 0.076 | 2.
0.250 | 0.076 | 2. 0.250 | 0.076 | 2.
0.251 | 0.141 | 3. 0.251 | 0.141 | 3.
0.375 | 0.141 | 3. 0.375 | 0.141 | 3.
0.376 | 0.207 | 4. 0.376 | 0.793 | 4.
0.500 | 0.207 | 4. 0.500 | 0.793 | 4.
0.501 | 0.272 | 5. 0.501 | 0.728 | 5.
0.625 | 0272 | 5. 0.625 | 0.728 | 5.
0.626 | 0.337 | 6. 0.626 | 0.663 | 6.
0.750 | 0.337 | 6. 0.750 | 0.663 | 6.
0.751 | 0.402 | 7. 0.751 | 0.598 | 7.
0.875 | 0.402 | 7. 0.875 | 0.598 | 7.
0.876 | 0.467 | 8. 0.876 | 0.533 | 8.
1.000 | 0.467 | 8. 1.000 | 0.533 | 8.

TABLE. B.1. Tabulated data for ® — X; coordinate mapping used in figure B.4. (a) Parallel
serpentine configuration. (b) Crossover serpentine configuration..
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B.5.  Tabulated Data for X, —» & Coordinate Mapping

(a)

Xr |OXy) | jR
0.000 | 0.063 1.
0.022 | 0.063 1.
0.065| 0.188 | 2.
0.087 | 0.188 | 2.
0.130 | 0313 | 3.
0.152 | 0313 | 3.
0.196 | 0.438 | 4.
0217 | 0.438 | 4.
0.261 | 0.563 | 5.
0.283 | 0.563 | 5.
0.326 | 0.688 | 6.
0.348 | 0.688 | 6.
0.391 | 0.813 | 7.
0413 | 0813 | 7.
0.457 | 0938 | 8.
0478 | 0938 | 8.
1.000 | —0.063 | —1.
0.978 | —0.063 | —1.
0.935 | —0.188 | —-2.
0913 | -0.188 | -2.
0.870 | =0.313 | -3.
0.848 | =0.313 | -3.
0.804 | —0.438 | —4.
0.783 [ —0.438 | —4.
0.739 | —=0.563 | -5.
0.717 | =0.563 | -5.
0.674 | —0.688 | —6.
0.652 | —0.688 | —6.
0.609 | —0.813 | -7.
0.587 | —=0.813 | -7.
0.543 | —0.938 | —8.
0.522 | —0.938 | -8.

(b)

Xy

O(Xy)

~.
=

0.000
0.022
0.065
0.087
0.130
0.152
0.804
0.783
0.739
0.717
0.674
0.652
0.609
0.587
0.543
0.522
1.000
0.978
0.935
0.913
0.870
0.848
0.196
0.217
0.261
0.283
0.326
0.348
0.391
0.413
0.457
0.478

0.063
0.063
0.188
0.188
0.313
0.313
0.438
0.438
0.563
0.563
0.688
0.688
0.813
0.813
0.938
0.938
—-0.063
-0.063
—0.188
—-0.188
-0.313
-0.313
—0.438
—-0.438
—-0.563
-0.563
—0.688
—-0.688
—0.813
—-0.813
—0.938
—0.938

Y R R N I
BEAWWRNRN==®RREAR NN AERWRDNDD =
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TABLE. B.2. Tabulated data for Xy — © coordinate mapping used in figure B.5. (a) Parallel

serpentine configuration. (b) Crossover serpentine configuration.
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Appendix C

This appendix describes the setups used to experimentally measure six model parameters
related to internal external pressure, forces, volume, and elastic modulus. Unless otherwise noted all
experiments were replicated 10 times with a single 16-bladder actuator mounted at the top, which is
also where the pressure inlet/outlet is located. We manually inflated a syringe filled with air. We read
the change in the volume of air on the syringe, and recorded pressure using a 20 — 400[kPa] absolute
pressure sensor 1040_0 from Phidgets. Four markers were placed on alternate links on the actuator,
such that the actuator pose in steady state could be automatically extracted from side-view photos using
Image.

C.1.  Inlet pressure versus VVolume

To measure the change in volume given an inlet pressure, we manually inflated a 16-bladder
actuator with a crossed configuration, while recording the amount of displaced volume in the syringe
and the steady-state pressure (Fig. C.1(A)). Starting at ambient pressure, we added a volume of air in
the range of —60[mL] to +40[mL], and repeated each trial 10 times. This range corresponds to that
used in the final hexapod robot described in the main article. The data is shown in Fig. C.1(B); note that
volume added is reported per bladder in the actuator. We used the slope of this curve to inform the
parameter da, /0P.

C.2. Differential Inlet Pressure versus Actuator Curvature

To measure the actuator curvature versus the inlet pressure, we connected the 8 bladders on
either side to two separate syringes which was inflated opposite of each other (Fig. C.1(C)). We then
computed the angle between the last two markers, as seen in Fig. C.1(D). We used the slope of this
curve to inform the parameter 9y /d(p'/E), where E = 1.8[MPa].

'(B)...

¥ = (3.4040x -3673.8380) 10

?' y = 10.2667x -0.5514

6-bellow actuator
(Crossed
configuation)

Pressure sensor
located off screen

i v 7

Pressure, p [Pa <10* Non-dimensional pressure difference, p// E[1

FIG. C.1. (A) Experimental setup to determine pressure versus volume. (B) Data related to

(A): mean and standard deviation shown in blue; best fit line in red. (C) Photo of experimental setup,

showing the actuator bending towards the side which has negative pressure relative to the other. The

overlay of red points show where the four markers were tracked. (D) Data related to (C). The curvature

at the tip of the actuator is approximated as the angle of the line through the third to the fourth marker
with respect to vertical.
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C.3. Inlet Pressure versus Actuator Elongation

To measure the bladder elongation versus applied pressure we manually inflated a 16-bladder
actuator in a crossed configuration. The outcome is shown in Fig. C.2(A). The properties of this curve
informs the parameter d{/d(p/E), where E = 1.8[MPal].

C.4.  Normal Force versus Actuator Extension and Compression

To measure actuator extension under strain, we mounted a cup to the bottom of a 16-bladder
actuator connected in a straight configuration and added weight in the range of 0 to 300[g] with 20[g]
intervals. A weight of 300[g] roughly correspond to one third the weight of the full hexapod robot, i.e.
similar to what the robot would experience when balancing on three actuators. We measured the change
in bladder volume, by connecting the actuator such that its infoutlet tube extruded into separate skinny,
transparent cylinder partially filled with water. The amount of displaced water corresponds to changes
in actuator volume.

To measure actuator compression under a normal force, we flipped it upside down and added a
similar range of weight to the top. To keep the actuator from buckling under the normal force, we placed
it in a square tube. The data from these two experiments is shown in Fig. C.2(A-B). This curve informs
parameter da, /dN,.

C.5. Torque versus Actuator Curvature
To measure bladder curvature under external torque, we connected two bladders, similar to that
described in Sec. C.4, such that their in/outlet tube extruded into separate skinny, transparent cylinders
partially filled with water. We then created a pulley system with weights in the range 0 to 300[g] to
create a moment on the bladders, as shown in the inset in Fig. C.2(C), and recorded the amount of air
displaced in the cylinders. The outcome is shown in Fig. C.2(C). The properties of this curve informs
the parameter da,/dM,.

(A). . (B) o (C), .-

y =0.0471x -0.0028

V]

y = (0.7882x + 0.0949) 10°%

(=]

05 s " . y=(-1.6304x + 0.1475) 10°
y = (0.0436x +-0.0692) 10 5.

r.{v#

. . . )
Change in bellow cross section, a; {rn'J

Change in length per bellow-pair, ¢ [mn]
.
Change in bellow cross section, a;[m?

1 09
T y=(-00173*x-0.0799) 10° 2 e
2 . L
0.5 3 .
-3 . -1 " 4 ' °
-0.05 0 0.05 0 10 20 30 40 50 0 05 1 15 2 2.5 3
Non-dimensional pressure sum, ji/E[1] Solid field nonnal force resultant, N, [N] Solid field moment resultant, A,[N - m]

FIG. C.2. (A) bladder elongation versus pressure. Black markers show mean and standard
deviation over 10 data points; the red curve is a fitted line. (B) bladder inflation (black) and deflation
(red) under extension and compression. Dashed curve and text show fitted lines. (C) Change in bladder
volume in response to torque; the inset shows a sketch of the experimental setup..
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C.6.  Procedural Generation of Gait Inlet Pressure Signal

To generate a motion cycle that takes advantage of the entire range of deformations possible
with the experimental system, we formulated four guiding principles based on our time scale analysis

to define the parameters of the following input signal function, p(0,t) = Pmax — 4Pmax/ (1 +

e(_z"(t/t}_ti”“/t}))>+Apmax/ <1+e(_zx(t/t;_te"d/t;))>. First, we set the upper work point,

Pmax = 40[kPa] from the mid-stroke position, to positively displace fluid to achieve the desired
extension from the neutral length [ (at steady state) while supporting the weight of the robot. Second,
we set the lower work point p,,,;;, from the mid-stroke position so that the negative displacement volume
evacuates the entire volume of the actuator (or actuators for the entire robot). Therefore, we ensure that
the actuator is firmly buckled during the gait cycle, giving us the maximum lift. We have now also
defined Aprmax = Pmax — Pmin & 140[kPa]. Third, we set the average input time scale t; = O(tf) to
~ 0.75 — 1 = 0.875[sec], as the time required by the pump to span Ap,,.. (positive and negative
strokes may differ), and derive our sigmoid logistic growth rate k = (6/87) by the non-dimensional
transition period 87 = (t;/t7) ~ 6. Thus, we ensure a maximal pressure gradient between bladders on
opposite sides of the actuator's neutral plane, leading to maximal stride length. (4) In the same way as
with sigmoid functions, we set the plateau period of the input signal to be proportional
to(tinit — tena) = 14t; Which corresponds to the time it takes the fluid to travel the entire length of the
connective tubing array . Using this plateau period as a guide, we can estimate the periodic extension
for the gait cycle to be ~ 42t , corresponding to two transition periods and two plateau periods; the
gait cycle frequency is, therefore, ~ 1/42¢;.
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